Subscribe to RSS
DOI: 10.1055/s-0042-1751383
Synthesis of 1H-Isochromenes and 1,2-Dihydroisoquinolines by Indium(III)-Catalyzed Cycloisomerization of ortho-(Alkynyl)benzyl Derivatives
Financial support was provided by the Ministerio de Ciencia, Innovación y Universidades (PGC2018-097792-B-I00 and PID2021-122335NB-I00), the Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia (GRC2018/039 and GRC2022/039) and the European Regional Development Fund (EDRF).
This article is dedicated to Prof. Cristina Nevado in celebration of the Dr. Margaret Faul Women in Chemistry Award.
Abstract
1H-Isochromenes and 1,2-dihydroisoquinolines are synthesized by regioselective indium(III)-catalyzed intramolecular hydrofunctionalization of o-(alkynyl)benzyl derivatives. The reaction with o-(alkynyl)benzyl alcohols and amines proceeds using indium triiodide (5–10 mol%) in toluene at 80–100 °C via regioselective 6-endo-dig intramolecular alkyne hydroalkoxylation or hydroamination in good yields. Alternatively, the cycloisomerization reaction of o-(alkynyl)benzaldehydes and imine derivatives using InI3 (5 mol%) and the Hantzsch ester (120 mol%) takes place, under milder reaction conditions, to give a variety of functionalized 1H-isochromenes and 1,2-dihydroisoquinolines through a domino cycloisomerization/reduction approach.
Key words
homogeneous catalysis - indium catalysis - cycloisomerization - alkynes - π-acid catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751383.
- Supporting Information
Publication History
Received: 14 August 2022
Accepted: 21 September 2022
Article published online:
17 November 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Poeira DL, Macara J, Marques MM. B. In Comprehensive Heterocyclic Chemistry IV, Vol. 7, Black D., Cossy J., Stevens C. Elsevier; Oxford: 2022: 243-328
- 1b Gao J.-M, Yang S.-X, Qin J.-C. Chem. Rev. 2013; 113: 4755
- 2a Yue D, Della Ca N, Larock RC. Org. Lett. 2004; 6: 1581
- 2b Mancuso R, Mehta S, Gabriele B, Salerno G, Jenks WS, Larock RC. J. Org. Chem. 2010; 75: 897
- 2c Morimoto K, Hirano K, Satoh T, Miura M. J. Org. Chem. 2011; 76: 9548
- 2d Arigela RK, Samala S, Mahar R, Shukla SK, Kundu B. J. Org. Chem. 2013; 78: 10476
- 2e Lee J, Panek JS. Org. Lett. 2014; 16: 3320
- 3a Yamamoto Y. J. Org. Chem. 2007; 72: 7817
- 3b Kennemur JL, Maji R, Scharf MJ, List B. Chem. Rev. 2021; 121: 14649
- 3c Akhmetov V, Feofanov M, Sharapa DI, Amsharov K. J. Am. Chem. Soc. 2021; 143: 15420
- 4a Barluenga J, Vazquez-Villa H, Ballesteros A, González JM. J. Am. Chem. Soc. 2003; 125: 9028
- 4b Barluenga J, Vazquez-Villa H, Merino I, Ballesteros A, González JM. Chem. Eur. J. 2006; 12: 5790
- 5 Stathakis CI, Gkizis PL, Zografos AL. Nat. Prod. Rep. 2016; 33: 1093
- 6a Gabriele B, Salerno G, Fazio A, Pittelli R. Tetrahedron 2003; 59: 6251
- 6b Mancuso R, Mehta S, Gabriele B, Salerno G, Jenks WS, Larock RC. J. Org. Chem. 2010; 75: 897
- 7 Varela-Fernández A, González-Rodríguez C, Varela JA, Castedo L, Saá C. Org. Lett. 2009; 11: 5350
- 8a Hashmi AS. K, Schäfer S, Wölfle M, Gil CD, Fischer P, Laguna A, Blanco MC, Gimeno MC. Angew. Chem. Int. Ed. 2007; 46: 6184
- 8b Handa S, Slaughter LM. Angew. Chem. Int. Ed. 2012; 51: 2912
- 8c Mariaule G, Newsome G, Toullec PY, Belmont P, Michelet V. Org. Lett. 2014; 16: 4570
- 8d Tomás-Mendivil E, Starck J, Ortuno JC, Michelet V. Org. Lett. 2015; 17: 6126
- 8e Tomás-Mendivil E, Heinrich CF, Ortuno JC, Starck J, Michelet V. ACS Catal. 2017; 7: 380
- 9 Obika S, Kono H, Yasui Y, Yanada R, Takemoto Y. J. Org. Chem. 2007; 72: 4462
- 10a Pathipati SR, van der Werf A, Selander N. Synthesis 2017; 49: 4931
- 10b Pérez Sestelo J, Sarandeses LA, Martínez MM, Alonso-Marañón L. Org. Biomol. Chem. 2018; 16: 5733
- 10c Mamane V, Hannen P, Fürstner A. Chem. Eur. J. 2004; 10: 4556
- 10d Surendra K, Qiu W, Corey EJ. J. Am. Chem. Soc. 2011; 133: 9724
- 10e Surendra K, Corey EJ. J. Am. Chem. Soc. 2014; 136: 10918
- 10f Michelet B, Colard-Itte J.-R, Thiery G, Guillot R, Bour C, Gandon V. Chem. Commun. 2015; 51: 7401
- 10g Yonekura K, Yoshimura Y, Akehi M, Tsuchimoto TA. Adv. Synth. Catal. 2018; 360: 1159
- 10h de Orbe ME, Zanini M, Quinonero O, Echavarren AM. ACS Catal. 2019; 9: 7817
- 11 Ishihara K. In Lewis Acids in Organic Synthesis . Yamamoto H. Wiley-VCH; Weinheim: 2000: 89-133
- 12 Alonso-Marañón L, Martínez MM, Sarandeses LA, Gómez-Bengoa E, Pérez Sestelo J. J. Org. Chem. 2018; 83: 7970
- 13a Alonso-Marañón L, Martínez MM, Sarandeses LA, Pérez Sestelo J. Org. Biomol. Chem. 2015; 13: 379
- 13b Alonso-Marañón L, Sarandeses LA, Martínez MM, Pérez Sestelo J. Org. Chem. Front. 2017; 4: 500
- 13c Alonso-Marañón L, Sarandeses LA, Martínez MM, Pérez Sestelo J. Org. Chem. Front. 2018; 5: 2308
- 13d Millán RE, Rodríguez J, Sarandeses LA, Gómez-Bengoa E, Pérez Sestelo J. J. Org. Chem. 2021; 86: 9515
- 14a Sakai N, Annaka K, Konakahara T. Tetrahedron Lett. 2006; 47: 631
- 14b Sakai N, Annaka K, Konakahara T. J. Org. Chem. 2006; 71: 3653
- 14c Sakai N, Annaka K, Fujita A, Sato A, Konakahara T. J. Org. Chem. 2008; 73: 4160
- 14d Nakamura I, Yamagishi U, Song D, Konta S, Yamamoto Y. Angew. Chem. Int. Ed. 2007; 46: 2284
- 14e Nakamura I, Yamagishi U, Song D, Konta S, Yamamoto Y. Chem. Asian J. 2008; 3: 285
- 15 For a review dealing with the application of the Hantzsch ester in organic synthesis, see: Zheng C, You S.-L. Chem. Soc. Rev. 2012; 41: 2498
- 16a Selvi T, Srinivasan K. Org. Biomol. Chem. 2013; 11: 2162
- 16b Sakthivel K, Srinivasan K. Org. Biomol. Chem. 2014; 12: 269
- 17 Smith RE, Richards NG. J. J. Org. Chem. 1997; 62: 1183
- 18 Šafář P, Marchalín S, Šoral M, Moncol J, Daïch A. Org. Lett. 2017; 19: 4742
- 19 Saito K, Kajiwara Y, Akiyama T. Angew. Chem. Int. Ed. 2013; 52: 13284
- 20 Hiroya K, Jouka R, Kameda M, Yasuhara A, Sakamoto T. Tetrahedron 2001; 57: 9697
- 21 Ding Q, Yu X, Wu J. Tetrahedron Lett. 2008; 49: 2752
For recent reviews, see:
For selected references, see: