Subscribe to RSS
DOI: 10.1055/s-0042-1751391
Reductive Umpolung and Defunctionalization Reactions through Higher-Order Titanium(III) Catalysis
The Fonds der Chemischen Industrie (FCI) (Liebig Fellowship and Dozentenpreis) and the Deutsche Forschungsgemeinschaft (DFG) (Grants: 213717717, 275166688, 275167197, 240508776, 333382543, 408295365) are gratefully acknowledged for their long-standing support.
Abstract
The single-electron transfer from an in situ formed titanium(III) catalyst to ketones, imines, nitriles, Michael acceptors, and many other functions has enabled a large number of intra- and intermolecular reductive umpolung reactions. Likewise, it allows the homolytic cleavage of functional groups for selective defunctionalizations. These reactions often take place with the participation of two titanium(III) species, avoiding free-radical pathways and enabling high catalyst control of the reaction selectivity. This account discusses the development of the individual reactions together with the fundamental mechanistic discoveries that led to a better understanding of such titanium(III)-catalyzed processes in general.
1 Introduction
2 Active Titanium(III) Species and Additives
3 Ketone-Nitrile Couplings
4 Further Reductive Umpolung Reactions
5 Catalytic Homolytic C–CN and C–SO2R Cleavage
6 Conclusion
Publication History
Received: 13 October 2022
Accepted after revision: 04 November 2022
Article published online:
23 December 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Tay NE. S, Lehnherr D, Rovis T. Chem. Rev. 2022; 122: 2487
- 1b Wu S, Kaur J, Karl TA, Tian X, Barham JP. Angew. Chem. Int. Ed. 2022; 61: e202107811
- 1c Morcillo SP. Angew. Chem. Int. Ed. 2019; 58: 14044
- 1d Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
- 1e Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 1f Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016
- 1g Plesniak MP, Huang H.-M, Procter DJ. Nat. Rev. Chem. 2017; 1: 0077
- 1h Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 1i Studer A, Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
- 1j Szostak M, Fazakerley NJ, Parmar D, Procter DJ. Chem. Rev. 2014; 114: 5959
- 2a Mondal S, Dumur F, Gigmes D, Sibi MP, Bertrand MP, Nechab M. Chem. Rev. 2022; 122: 5842
- 2b Zimmerman J, Sibi MP. Top. Curr. Chem. 2006; 263: 107
- 2c Sibi MP, Manyem S, Zimmerman J. Chem. Rev. 2003; 103: 3263
- 3a Streuff J, Gansäuer A. Angew. Chem. Int. Ed. 2015; 54: 14232
- 3b Gansäuer A, Bluhm H. Chem. Rev. 2000; 100: 2771
- 4 Hilche T, Younas SL, Gansäuer A, Streuff J. ChemCatChem 2022; 14: e202200530
- 5a Frey G, Hausmann JN, Streuff J. Chem. Eur. J. 2015; 21: 5693
- 5b Saito T, Nishiyama H, Tanahashi H, Kawakita K, Tsurugi H, Mashima K. J. Am. Chem. Soc. 2014; 136: 5161
- 6a Tsurugi H, Mashima K. Acc. Chem. Res. 2019; 52: 769
- 6b Yurino T, Ueda Y, Shimizu Y, Tanaka S, Nishiyama H, Tsurugi H, Sato K, Mashima K. Angew. Chem. Int. Ed. 2015; 54: 14437
- 7 Zhang Z, Hilche T, Slak D, Rietdijk NR, Oloyede UN, Flowers RA. II, Gansäuer A. Angew. Chem. Int. Ed. 2020; 59: 9355
- 8a Fermi A, Gualandi A, Bergamini G, Cozzi PG. Eur. J. Org. Chem. 2020; 6955
- 8b Parasram M, Shields BJ, Ahmad O, Knauber T, Doyle AG. ACS Catal. 2020; 10: 5821
- 8c Gualandi A, Calogero F, Mazzarini M, Guazzi S, Fermi A, Bergamini G, Cozzi PG. ACS Catal. 2020; 10: 3857
- 8d Lin S, Chen Y, Li F, Shi C, Shi L. Chem. Sci. 2020; 11: 839
- 8e Zhang Z, Richrath RB, Gansäuer A. ACS Catal. 2019; 9: 3208
- 9a Streuff J. Chem. Rec. 2014; 14: 1100
- 9b Hirao T. Top. Curr. Chem. 2007; 279: 53
- 9c For an early example of a titanium(III)-promoted pinacol coupling, see: Mukaiyama T, Sato T, Hanna J. Chem. Lett. 1973; 1041
- 10a Gansäuer A, Justicia J, Fan C.-A, Worgull D, Piestert F. Top. Curr. Chem. 2007; 279: 25
- 10b RajanBabu TV, Nugent WA. J. Am. Chem. Soc. 1994; 116: 986
- 10c Nugent WA, RajanBabu TV. J. Am. Chem. Soc. 1988; 110: 8561
- 11 Gansäuer A. Synlett 1998; 801
- 12a Hirao T, Hatano B, Asahara M, Muguruma Y, Ogawa A. Tetrahedron Lett. 1998; 39: 5247
- 12b Gansäuer A. Chem. Commun. 1997; 457
- 13a Gansäuer A, Bluhm H, Rinker B, Narayan S, Schick M, Lauterbach T, Pierobon M. Chem. Eur. J. 2003; 9: 531
- 13b Gansäuer A, Lauterbach T, Bluhm H, Noltemeyer M. Angew. Chem. Int. Ed. 1999; 38: 2909
- 13c Gansäuer A, Bluhm H, Pierobon M. J. Am. Chem. Soc. 1998; 120: 12849
- 13d Gansäuer A, Pierobon M, Bluhm H. Angew. Chem. Int. Ed. 1998; 37: 101
- 14 Morcillo SP, Miguel D, Campaña AG, Álvarez de Cienfuegos L, Justicia J, Cuerva JM. Org. Chem. Front. 2014; 1: 15
- 15a Wu X, Chang Y, Lin S. Chem 2022; 8: 1805
- 15b Pang X, Shu X.-Z. Synlett 2021; 32: 1269
- 15c Rosales Martínez A, Pozo Morales L, Díaz Ojeda E, Castro Rodríguez M, Rodríguez-García I. J. Org. Chem. 2021; 86: 1311
- 15d McCallum T, Wu X, Lin S. J. Org. Chem. 2019; 84: 14369
- 15e Beaumier EP, Pearce AJ, See XY, Tonks IA. Nat. Rev. Chem. 2019; 3: 15
- 15f Botubol-Ares JM, Durán-Peña MJ, Hanson JR, Hernández-Galán R, Collado IG. Synthesis 2018; 50: 2163
- 16 Streuff J. Synthesis 2013; 45: 281
- 17a Enemærke RJ, Larsen J, Hjøllund GH, Skrydstrup T, Daasbjerg K. Organometallics 2005; 24: 1252
- 17b Enemærke RJ, Larsen J, Skrydstrup T, Daasbjerg K. J. Am. Chem. Soc. 2004; 126: 7853
- 18 Barden MC, Schwartz J. J. Am. Chem. Soc. 1996; 118: 5484
- 19a Gansäuer A, Bauer D. Eur. J. Org. Chem. 1998; 2673
- 19b Gansäuer A, Bauer D. J. Org. Chem. 1998; 63: 2070
- 19c Gansäuer A, Bluhm H. Chem. Commun. 1998; 2143
- 20a Gansäuer A, Kube C, Daasbjerg K, Sure R, Grimme S, Fianu GD, Sadasivam DV, Flowers RA. II. J. Am. Chem. Soc. 2014; 136: 1663
- 20b Gansäuer A, Behlendorf M, von Laufenberg D, Fleckhaus A, Kube C, Sadasivam DV, Flowers RA. II. Angew. Chem. Int. Ed. 2012; 51: 4739
- 21 Weweler J, Younas SL, Streuff J. Angew. Chem. Int. Ed. 2019; 58: 17700
- 22a Rosales A, Muñoz-Bascón J, Roldan-Molina E, Castañeda MA, Padial NM, Gansäuer A, Rodríguez-García I, Oltra JE. J. Org. Chem. 2014; 79: 7672
- 22b Gansäuer A, Behlendorft M, Cangönül A, Kube C, Cuerva JM, Friedrich J, van Gastel M. Angew. Chem. Int. Ed. 2012; 51: 3266
- 23 Seewald PA, White GS, Stephan DW. Can. J. Chem. 1988; 66: 1147
- 24 Streuff J, Feurer M, Frey G, Steffani A, Kacprzak S, Weweler J, Leijendekker LH, Kratzert D, Plattner DA. J. Am. Chem. Soc. 2015; 137: 14396
- 25 Daasbjerg K, Svith H, Grimme S, Gerenkamp M, Mück-Lichtenfeld C, Gansäuer A, Barchuk A, Keller F. Angew. Chem. Int. Ed. 2006; 45: 2041
- 26 Corey EJ, Pyne SG. Tetrahedron Lett. 1983; 24: 2821
- 27a Molander GA, Kenny C. J. Am. Chem. Soc. 1989; 111: 8236
- 27b Kraus GA, Sy JO. J. Am. Chem. Soc. 1989; 54: 77
- 28a Yamamoto Y, Matsumi D, Hattori R, Itoh K. J. Org. Chem. 1999; 64: 3224
- 28b Yamamoto Y, Matsumi D, Itoh K. Chem. Commun. 1998; 875
- 29 Zhou L, Hirao T. Tetrahedron 2001; 57: 6927
- 30 Fürstner A, Hupperts A. J. Am. Chem. Soc. 1995; 117: 4468
- 31 Streuff J, Feurer M, Bichovski P, Frey G, Gellrich U. Angew. Chem. Int. Ed. 2012; 51: 8661
- 32 Feurer M, Frey G, Luu H.-T, Kratzert D, Streuff J. Chem. Commun. 2014; 50: 5370
- 33 Frey G, Luu H.-T, Bichovski P, Feurer M, Streuff J. Angew. Chem. Int. Ed. 2013; 52: 7131
- 34 Dunlap MS, Nicholas KM. J. Organomet. Chem. 2001; 630: 125
- 35 Paradas M, Campaña AG, Estévez RE, Álvarez de Cienfuegos L, Jiménez T, Robles R, Cuerva JM, Oltra JE. J. Org. Chem. 2009; 74: 3616
- 36 Loose F, Plettenberg I, Haase D, Saak W, Schmidtmann M, Schäfer A, Müller T, Beckhaus R. Organometallics 2014; 33: 6785
- 37 Streuff J, Himmel D, Younas SL. Dalton Trans. 2018; 47: 5072
- 38 For the step-by-step derivation of such an analytic rate equation of higher-order catalysis with a pre-equilibrium, see: Nielsen LP. C, Stevenson CP, Blackmond DG, Jacobsen EN. J. Am. Chem. Soc. 2004; 126: 1360
- 39 Younas SL, Streuff J. ACS Catal. 2021; 11: 11451
- 40a Bichovski P, Haas TM, Keller M, Streuff J. Org. Biomol. Chem. 2016; 14: 5673
- 40b Bichovski P, Haas TM, Kratzert D, Streuff J. Chem. Eur. J. 2015; 21: 2339
- 40c Streuff J. Chem. Eur. J. 2011; 17: 5507
- 41a Leijendekker LH, Weweler J, Leuther TM, Kratzert D, Streuff J. Chem. Eur. J. 2019; 25: 3382
- 41b Leijendekker LH, Weweler J, Leuther TM, Streuff J. Angew. Chem. Int. Ed. 2017; 56: 6103
- 42 Luu H.-T, Wiesler S, Frey G, Streuff J. Org. Lett. 2015; 17: 2478
- 43a Zhao J, Méndez-Sánchez D, Ward JM, Hailes HC. J. Org. Chem. 2019; 84: 7702
- 43b Vanden Eynden MJ, Kunchithapatham K, Stambuli JP. J. Org. Chem. 2010; 75: 8542
- 44a Tashrifi Z, Khanaposhtani MM, Larijani B, Mahdavi M. Asian J. Org. Chem. 2021; 10: 2421
- 44b Gandhi S. Org. Biomol. Chem. 2019; 17: 9683
- 44c Li X, Coldham I. J. Am. Chem. Soc. 2014; 136: 5551
- 45 Luu H.-T, Streuff J. Eur. J. Org. Chem. 2019; 139
- 46a Blackham EE, Booker-Milburn KI. Angew. Chem. Int. Ed. 2017; 56: 6613
- 46b Paladino M, Zaifman J, Ciufolini MA. Org. Lett. 2015; 17: 3422
- 46c Xu R, Gu Q, Wu W, Zhao Z, You S. J. Am. Chem. Soc. 2014; 136: 15469
- 46d Heller ST, Kiho T, Narayan AR. H, Sarpong R. Angew. Chem. Int. Ed. 2013; 52: 11129
- 46e Chuang KV, Navarro R, Reisman SE. Chem. Sci. 2011; 2: 1086
- 46f Joo JM, David RA, Yuan Y, Lee C. Org. Lett. 2010; 12: 5704
- 46g Zhang F, Simpkins NS, Blake AJ. Org. Biomol. Chem. 2009; 7: 1963
- 46h Zhang F, Simpkins NS, Wilson C. Tetrahedron Lett. 2007; 48: 5942
- 46i Wang Q, Padwa A. Org. Lett. 2006; 8: 601
- 46j Allin SM, Streetley GB, Slater M, James SL, Martin WP. Tetrahedron Lett. 2004; 45: 5493
- 46k Cassayre J, Quiclet-Sire B, Saunier J.-B, Zard SZ. Tetrahedron Lett. 1998; 39: 8995
- 46l Wasserman HH, Amici RM. J. Org. Chem. 1989; 54: 5843
- 46m Danishefsky SJ, Panek JS. J. Am. Chem. Soc. 1987; 109: 917
- 46n Tsuda Y, Nakai A, Ito K, Suzuki F, Haruna M. Heterocycles 1984; 22: 1817
- 46o Tanaka H, Shibata M, Ito K. Chem. Pharm. Bull. 1984; 32: 1578
- 47a Wang C.-C, Lin P.-S, Cheng C.-H. Tetrahedron Lett. 2004; 45: 6203
- 47b Baizer MM. J. Electrochem. Soc. 1964; 111: 215
- 48 Estévez RE, Oller-López JL, Robles R, Melgarejo CR, Gansäuer A, Cuerva JM, Oltra JE. Org. Lett. 2006; 8: 5433
- 49 Kosal AD, Ashfeld BL. Org. Lett. 2010; 12: 44
- 50 Du J, Espelt LR, Guzei IA, Yoon TP. Chem. Sci. 2011; 2: 2115
- 51 Biju AT, Padmanaban M, Wurz NE, Glorius F. Angew. Chem. Int. Ed. 2011; 50: 8412
- 52a Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
- 52b Burstein C, Glorious F. Angew. Chem. Int. Ed. 2004; 43: 6205
- 53a Zheng X, He J, Li H.-H, Wang A, Dai X.-J, Wang A.-E, Huang PQ. Angew. Chem. Int. Ed. 2015; 54: 13739
- 53b Zheng X, Dai X.-J, Yuan H.-Q, Ye C.-X, Ma J, Huang P.-Q. Angew. Chem. Int. Ed. 2013; 52: 3494
- 54a Wilkinson G, Birmingham JM. J. Am. Chem. Soc. 1954; 76: 4281
- 54b Wilkinson G, Pauson PL, Birmingham JM, Cotton FA. J. Am. Chem. Soc. 1953; 75: 1011
- 55a Alonso F, Beletskaya IP, Yus M. Chem. Rev. 2002; 102: 4009
- 55b Yanlong Q, Guisheng L, Huang Y.-Z. J. Organomet. Chem. 1990; 381: 29
- 55c Zhang Y, Yu Y, Bao W. Synth. Commun. 1995; 25: 1825
- 56a Diéguez HR, López A, Domingo V, Arteaga JF, Dobado JA, Herrador MM, Quílez del Moral JF, Barrero AF. J. Am. Chem. Soc. 2010; 132: 254
- 56b Justicia J, Jiménez T, Morcillo SP, Cuerva JM, Oltra JE. Tetrahedron 2009; 65: 10837
- 56c Yadav JS, Shekharam T, Gadgil VR. J. Chem. Soc., Chem. Commun. 1990; 843
- 56d Sato F, Tomuro Y, Ishikawa H, Oikawa T, Sato M. Chem. Lett. 1980; 103
- 57a Mattalia J.-M. Beilstein J. Org. Chem. 2017; 13: 267
- 57b Patra T, Agasti S, Modak A, Maiti D. Chem. Commun. 2013; 49: 8362
- 57c Tobisu M, Nakamura R, Kita Y, Chatani N. J. Am. Chem. Soc. 2009; 131: 3174
- 57d Mattalia J.-M, Delapierre CM, Hazimeh H, Chanon M. ARKIVOC 2006; (iv): 90
- 58a Kang H.-Y, Hong WS, Cho YS, Koh HY. Tetrahedron Lett. 1995; 36: 7661
- 58b Curran DP, Seong CM. Synlett 1991; 107
- 58c Curran DP, Seong CM. J. Am. Chem. Soc. 1990; 112: 9401
- 59a Ramachary DB, Kishor M, Reddy GB. Org. Biomol. Chem. 2006; 4: 1641
- 59b Ramachary DB, Kishor M, Ramakumar K. Tetrahedron Lett. 2006; 47: 651
- 59c Dunham JC, Richardson AD, Sammelson RE. Synthesis 2006; 680
- 60 Kern C, Selau J, Streuff J. Chem. Eur. J. 2021; 27: 6178
- 61a Nájera C, Yus M. Tetrahedron 1999; 55: 10547
- 61b Alonso DA, Nájera C. In Organic Reactions, Vol. 72. Denmark SE. John Wiley & Sons; Hoboken: 2008: 367
- 62a Inanaga K, Fukuyama T, Kubota M, Komatsu Y, Chiba H, Kayano A, Tagami K. Org. Lett. 2015; 17: 3158
- 62b Hasegawa E, Tanaka T, Izumiya N, Kiuchi T, Ooe Y, Iwamoto H, Takizawa S.-Y, Murata S. J. Org. Chem. 2020; 85: 4344
- 62c Wnuk SF, Rios JM, Khan J, Hsu Y.-L. J. Org. Chem. 2000; 65: 4169
- 62d Knowles H, Parsons AF, Pettifer RM. Synlett 1997; 271
- 62e Wnuk SF, Robins MJ. J. Am. Chem. Soc. 1996; 118: 2519
- 62f Sakamoto T, Katoh E, Kondo Y, Yamanaka H. Chem. Pharm. Bull. 1990; 38: 1513
- 62g Smith AB. III, Hale KJ, McCauley JP. Jr. Tetrahedron Lett. 1989; 30: 5579
- 62h Nakamura K, Fujii M, Mekata H, Oka S, Ohno A. Chem. Lett. 1986; 15: 87
- 62i Brown AC, Carpino LA. J. Org. Chem. 1985; 50: 1749
- 62j House HO, Larson JK. J. Org. Chem. 1968; 33: 61
- 63 Castro Rodríguez M, Rodríguez García I, Rodríguez Maecker RN, Pozo Morales L, Oltra JE, Rosales Martínez A. Org. Process Res. Dev. 2017; 21: 911
- 64a Richrath RB, Olyschläger T, Hildebrandt S, Enny DG, Fianu GD, Flowers RA. II, Gansäuer A. Chem. Eur. J. 2018; 24: 6371
- 64b Gansäuer A, Hildebrandt S, Michelmann A, Dahmen T, von Laufenberg D, Kube C, Fianu GD, Flowers RA. II. Angew. Chem. Int. Ed. 2015; 54: 7003
- 65a Wu X, Hao W, Ye K.-Y, Jiang B, Pombar G, Song Z, Lin S. J. Am. Chem. Soc. 2018; 140: 14836
- 65b Hao W, Wu X, Sun JZ, Siu JC, MacMillan SN, Lin S. J. Am. Chem. Soc. 2017; 139: 12141
Selected work:
For important stoichiometric examples, see:
For examples, see:
For other syntheses, see:
See also:
Selected works:
Selected desulfonylation examples: