Subscribe to RSS
DOI: 10.1055/s-0042-1751402
Recent Advances in Quinone Methide Chemistry for Protein-Proximity Capturing
Startup fund from HUST and Open Fund supported by the State Key Laboratory of Natural and Biomimetic Drugs (K202218).
Dedicated to Professor Guoqiang Lin on the occasion of his 80th birthday.
Abstract
Here we summarize the most recent findings in the chemical-, photo-, or enzyme-triggered generation of nitrogen and oxygen anions leading to the formation of quinone methide intermediates (QMIs). This short review is divided into two categories: generation of nitrogen and oxygen anions. Based on quinone methide intermediates (QMIs), proximate capture of a wide range of proteins has been widely determined and studied. Generally, the triggers include, photoirradiation using 365/254 nm UV light, small molecules (ROS/TBAF/s-tetrazine), metal catalysis (iridium catalysis), and enzymes (NQO1/β-galactosidase). New directions including far-red light, heat, force, microwave, and more practical approaches are explored and illustrated.
1 Introduction
2 Generation of the Nitrogen Anion
3 Generation of the Oxygen Anion
4 Conclusion
Key words
quinone methide chemistry - reactive oxygen species - boronic acid - photoirradiation - NAD(P)H quinone dehydrogenase 1 - β-galactosidase - protein-protein interactionsPublication History
Received: 30 October 2022
Accepted after revision: 01 December 2022
Article published online:
03 January 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Reactive Intermediate Chemistry . Moss RA, Platz MS, Jones MJr. John Wiley & Sons; Hoboken: 2004
- 2 Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
- 3 Taylor RJ, Geeson MB, Journeaux T, Bernardes GJ. L. J. Am. Chem. Soc. 2022; 144: 14404
- 4 Nachtsheim BJ. Nat. Chem. 2020; 12: 326
- 5 Gnaim S, Shabat D. Acc. Chem. Res. 2014; 47: 2970
- 6 Bai WJ, David JG, Feng Z.-G, Weaver MG, Wu KL, Pettus TR. R. Acc. Chem. Res. 2014; 47: 3655
- 7 Purdy TN, Moore BS, Lukowski AL. J. Nat. Prod. 2022; 85: 688
- 8 Doyon TJ, Perkins JC, Baker Dockrey SA, Romero EO, Skinner KC, Zimmerman PM, Narayan AR. H. J. Am. Chem. Soc. 2019; 141: 20269
- 9 Liu HY, Luo HX, Xue Q, Qin S, Qiu S, Liu SB, Lin J, Li JP, Chen PR. J. Am. Chem. Soc. 2022; 144: 5517
- 10 Payne NC, Maksoud S, Tannous BA, Mazitschek R. Cell Chem. Biol. 2022; 29: 1333
- 11 Huang ZY, Liu ZQ, Xie X, Zeng RX, Chen ZJ, Kong LH, Fan XY, Chen PR. J. Am. Chem. Soc. 2021; 143: 18714
- 12 Iwashita H, Castillo E, Messina MS, Swanson RA, Chang CJ. Proc. Natl. Acad. Sci. U.S.A. 2021; 118: e2018513118
- 13 Jiménez-Moreno E, Guo ZJ, Oliveira BL, Albuquerque IS, Kitowski A, Guerreiro A, Boutureira O, Rodrigues T, Jiménez-Osés G, Bernardes GJ. L. Angew. Chem. Int. Ed. 2017; 56: 243
- 14 Doura T, Kamiya M, Obata F, Yamaguchi Y, Hiyama TY, Matsuda T, Fukamizu A, Noda M, Miura M, Urano Y. Angew. Chem. Int. Ed. 2016; 55: 9620
- 15 Chiba M, Kamiya M, Tsuda-Sakurai K, Fujisawa Y, Kosakamoto H, Kojima R, Miura M, Urano Y. ACS Cent. Sci. 2019; 5: 1676
- 16 Ito H, Kawamata Y, Kamiya M, Tsuda-Sakurai K, Tanaka S, Ueno T, Komatsu T, Hanaoka K, Okabe S, Miura M, Urano Y. Angew. Chem. Int. Ed. 2018; 57: 15702
- 17 Liu J, Cai L, Sun W, Cheng R, Wang N, Jin L, Rozovsky S, Seiple IB, Wang L. Angew. Chem. Int. Ed. 2019; 58: 18839
- 18 Liu J, Cheng R, Van Eps N, Wang N, Morizumi T, Ou WL, Klauser PC, Rozovsky S, Ernst OP, Wang L. J. Am. Chem. Soc. 2020; 142: 17057
- 19 Liu J, Li S, Aslam NA, Zheng F, Yang B, Cheng R, Wang N, Rozovsky S, Wang PG, Wang Q, Wang L. J. Am. Chem. Soc. 2019; 141: 9458
- 20 Chiang Y, Kresge AJ, Zhu Y. J. Am. Chem. Soc. 2002; 124: 6349
- 21 Zhou QB, Turnbull KD. J. Org. Chem. 2001; 66: 7072
- 22 Tang Q, Liu L, Guo Y, Zhang X, Zhang S, Jia Y, Du Y, Cheng B, Yang L, Huang Y, Chen X. Angew. Chem. Int. Ed. 2022; 61: e202113929
- 23 Liang CJ, Zheng QZ, Luo TL, Cai WQ, Mao LQ, Wang M. CCS Chem. 2022; 4: 3809 ; DOI: 10.31635/ccschem.022.202101529
- 24 Park SY, Yoon SA, Lee MH. Bull. Korean Chem. Soc. 2021; 42: 119
- 25 Cheng ZM, Valença WO, Dias GG, Scott J, Barth ND, de Moliner F, Souza GB. P, Mellanby RJ, Vendrell M, da Silva Júnior EN. Bioorg. Med. Chem. 2019; 27: 3938
- 26 Gu JA, Mani V, Huang ST. Analyst 2015; 140: 346
- 27 Cheng HP, Yang XH, Lan L, Xie LJ, Chen C, Liu C, Chu J, Li ZY, Liu L, Zhang TQ, Luo DQ, Cheng L. Angew. Chem. Int. Ed. 2020; 59: 10645
- 28 Gan Y, Li Y, Zhou H, Wang R. Org. Lett. 2022; 24: 6625
- 29 Zhou HL, Li YY, Zhang JW, Wang L, Zheng YY, Begley T, Sheng J, Wang R. bioRxiv 2022; preprint
- 30 Wang, S.; Zhou, H. L.; Li, Y. Y.; Zheng, Y. Y.; Sheng, J.; Wang, R. Bioorthogonal in-cell labeling and profiling of N 6-isopentenyladenosine (i6A) modified RNA, unpublished.
- 31 Trinkle-Mulcahy L.; F1000Res.; 2019, 8: F1000 Faculty Rev-135;
- 32 Roux KJ, Kim DI, Raida M, Burke B. J. Cell Biol. 2012; 196: 801
- 33 Hung V, Zou P, Rhee H.-Y, Udeshi ND, Cracan V, Svinkina T, Carr SA, Mootha VK, Ting AY. Mol. Cell 2014; 55: 332
- 34 Fields S, Song O. Nature 1989; 340: 245
- 35 Dobzhansky T. Genetics 1946; 31: 269
- 36 Zhang Y. Proteins 2009; 77: 100
- 37 Flor A., Pagacz J., Thompson D., Kron S.; J. Visualized Exp.; 2022, 187: e64176;
- 38 Mu Q, Cui K, Wang ZJ, Matsuda T, Cui W, Kato H, Namiki S, Yamazaki T, Frauenlob M, Nonoyama T, Tsuda M, Tanaka S, Nakajima T, Gong JP. Nat. Commun. 2022; 13: 6213