RSS-Feed abonnieren
DOI: 10.1055/s-0042-1751420
Carbonyl Allylation and Crotylation: Historical Perspective, Relevance to Polyketide Synthesis, and Evolution of Enantioselective Ruthenium-Catalyzed Hydrogen Auto-Transfer Processes
Abstract
The evolution of methods for carbonyl allylation and crotylation of alcohol proelectrophiles culminating in the design of iodide-bound ruthenium-JOSIPHOS catalysts is prefaced by a brief historical perspective on asymmetric carbonyl allylation and its relevance to polyketide construction. Using gaseous allene or butadiene as precursors to allyl- or crotylruthenium nucleophiles, respectively, new capabilities for carbonyl allylation and crotylation have been unlocked, including stereo- and site-selective methods for the allylation and crotylation of 1,3-diols and related polyols.
1 Introduction and Historical Perspective
2 Ruthenium-Catalyzed Conversion of Lower Alcohols into Higher Alcohols
3 Conclusion and Future Outlook
# 1
Introduction and Historical Perspective
Carbonyl allylation is longstanding and has traditionally relied on the use of allylmetal reagents based on zinc (1876),[1`] [b] [c] magnesium (1904),[1d] boron (1964),[1e] tin (1967),[1f] silicon (1976),[1g] and chromium (1977).[1h] The first enantioselective carbonyl allylations were developed by Hoffmann (1978)[2a] [b] using a chiral allylboronate derived from camphor. This finding led to the design of increasingly effective chiral allylmetal reagents,[2] as well as the development of catalytic enantioselective carbonyl allylation protocols,[3] as first reported by Yamamoto (1991).[3a] ‘Umpoled’ catalytic enantioselective allyl halide-carbonyl reductive couplings (asymmetric Nozaki–Hiyama allylations) reported by Cozzi and Umani-Ronchi (1999) soon followed (Figure [1]).[3f] These methods were uniformly reliant on preformed allylmetal reagents or stoichiometric metallic reductants, as were corresponding enantioselective crotylation protocols.[4]
The development of asymmetric carbonyl allylation and crotylation protocols were, in part, incentivized by the prospect of preparing polyketide natural products via de novo chemical synthesis (Figure [2]).[5] Polyketides are a broad class of microbial metabolites that are used frequently in human and veterinary medicine, as well as crop protection.[6] As shown in the structure of roxaticin,[7] an oxopolyene macrolide, 2-carbon ‘acetate’ subunits are common polyketide substructures. Similarly, the macrolide antibiotic erythromycin A,[8] the first polyketide approved for use in human medicine, comprises recurring 3-carbon ‘propionate’ subunits. The challenge of preparing these structural motifs impelled advances in acyclic stereocontrol, especially stereospecific methods for diastereo- and enantioselective carbonyl addition such as the aldol reaction[9] and, as described in the present monograph, carbonyl allylation and crotylation.[4]
Despite decades of work on polyketide total synthesis, commercial polyketides (with the exception of eribulin)[10] continue to be prepared via fermentation or semi-synthesis,[11] suggesting the classical lexicon of synthetic methods do not avail efficient entry to these stereochemically complex compounds. Indeed, the commercial manufacturing route to eribulin (halavenTM),[10] a truncated congener of the marine polyketide halichondrin B and FDA-approved treatment for metastatic breast cancer, requires 65 steps, of which >50% are redox and protecting group manipulations. Thus, stereo- and site-selective methods for polyketide construction that bypass protecting groups and oxidation level adjustments should streamline routes to medicinally relevant polyketides. As Earth’s biosphere encompasses >1 trillion microbial species,[12] next-generation methods for bacterial culture will augment the rate of polyketide discovery,[13] and improved methods for de novo polyketide construction[5] would facilitate preparation of polyketide-inspired clinical candidates that are inaccessible via fermentation or semi-synthesis.[14]


Eliezer Ortiz obtained a B.S. in biochemistry with honors from the University of Texas at San Antonio (2019), where he conducted research under the instruction of Professor Doug E. Frantz and received the Dr. Thyagarajan Award for Excellence in Organic Chemistry. After spending a summer as a Postbaccalaureate Research Fellow at UTSA, he entered the doctoral degree program at the University of Texas at Austin in the laboratory of Professor Michael J. Krische in Fall 2019, where he is developing enantioselective metal-catalyzed carbonyl reductive couplings of π-unsaturated feedstocks.
Connor G. Saludares obtained a B.A. degree in chemistry from Occidental College (2021), where he conducted research under the guidance of Prof. Raul Navarro. In Fall 2021, he entered the doctoral degree program at the University of Texas at Austin as a NIH Pre-Doctoral Fellow in the laboratory of Prof. Michael J. Krische. His research is focused on the development of enantioselective metal-catalyzed carbonyl reductive coupling of π-unsaturated feedstocks.
Jessica Wu obtained a B.S. in chemistry with distinction from the University of Wisconsin-Madison (2018), where she conducted research under the supervision of Professor Weiping Tang. In Fall 2020, she entered the doctoral degree program at the University of Texas at Austin as a Provost’s Graduate Excellence Fellow in the laboratory of Professor Michael J. Krische, where she is developing metal-catalyzed carbonyl reductive couplings and investigating their application to the total synthesis of type I polyketide natural products.
Yoon Cho obtained a B.S. in chemistry from the Wheaton College (2020), where he conducted research under the supervision of Professor Allison R. Dick. In Fall 2020, he entered the doctoral degree program at the University of Texas at Austin in the laboratory of Professor Michael J. Krische, where he is developing metal-catalyzed carbonyl reductive couplings of π-unsaturated feedstocks.
Catherine Gazolla Santana obtained a B.S. in chemical engineering from the University of São Paulo (2019), where she conducted research under the instruction of Professor Eduardo Triboni. In Fall 2021 she entered the doctoral degree program at the University of Texas at Austin in the laboratory of Professor Michael J. Krische, where she is developing enantioselective metal-catalyzed carbonyl reductive couplings of π-unsaturated feedstocks.
In a departure from classical methods for asymmetric carbonyl addition[15] and related metal-catalyzed carbonyl reductive couplings,[16] our laboratory has pioneered a new class of hydrogen auto-transfer reactions for the direct conversion of lower alcohols into higher alcohols.[17] These processes occur via hydrogen transfer from alcohol proelectrophiles to π-unsaturated pronucleophiles to form transient carbonyl-organometal pairs that combine via carbonyl addition. In this manner, carbonyl addition occurs from the alcohol oxidation level in the absence of stoichiometric organometallic reagents. These reactions are distinct from related ‘borrowing hydrogen’ processes, which affect formal hydroxyl substitution via successive alcohol dehydrogenation–carbonyl condensation–π-bond reduction (Figure [3]).[18] The first carbonyl additions via hydrogen auto-transfer were discovered in 2007 using iridium catalysts.[19] Enantioselective iridium-catalyzed carbonyl allylations and crotylations were reported shortly thereafter.[20] In 2008, related ruthenium-catalyzed reactions were developed, which begins the topic of this review.[21]


# 2
Ruthenium-Catalyzed Conversion of Lower Alcohols into Higher Alcohols
Initially developed ruthenium-catalyzed carbonyl additions were achieved through exposure of primary alcohol proelectrophiles to diene pronucleophiles in the presence of the chloride-bound catalyst derived from HClRu(CO)(PPh3)3 and added rac-BINAP or P(p-MeOPh)3 (Scheme [1], left).[21a] In these reactions, ruthenium hydrides promote diene hydrometalation to form nucleophilic π-allylruthenium species[22] that engage in carbonyl addition to aldehydes obtained via primary alcohol dehydrogenation. As carbonyl addition occurs by way of the primary σ-allylruthenium haptomer with allylic inversion, secondary homoallylic alcohols are generated with complete levels of branched regioselectivity. Notably, while the primary alcohol reactant is subject to dehydrogenation, the resulting secondary alcohol product resists a less endothermic oxidation to form the ketone. This phenomenon is attributed to chelation of the homoallylic olefin, which suppresses β-hydride elimination by occupying the last available coordination site on ruthenium. In agreement with this interpretation, β,γ-enones are formed if the catalyst experiences coordinative unsaturation,[21b] which can be achieved through the omission of exogenous ligand and use of trifluoroacetate as counterion,[23] which can equilibrate between η1 and η3-binding modes (Scheme [1], right).
Managing relative and absolute stereocontrol in diene-mediated crotylations of primary alcohols raised the question of whether carbonyl addition occurs through closed chairlike transition structures in a stereospecific manner (Figure [4]). To probe this issue, the indicated 2-silyl-substituted butadiene, which upon hydrometalation should exist predominantly as a single geometrical isomer due to allylic 1,2-strain,[24] was exposed to primary alcohols in the presence of the ruthenium catalyst derived from HClRu(CO)(PPh3)3 and (R)-DM-SEGPHOS.[25a] The products of crotylation were formed with complete control of regio- and syn-diastereoselectivity and high levels of enantioselectivity, corroborating intervention of closed chairlike transition structures. This method was used to construct the C12–C13 and C6–C7 stereodiads of the polyketide natural products trienomycins A and F and soraphen A, respectively.[26] Finally, in a beautiful application of this method, Brimble and Furkert deployed enantiomeric ruthenium catalysts in couplings of the 2-silyl-substituted butadiene with the chiral alcohol derived from the Roche ester to generate the syn,anti- or syn,syn-stereotriads with complete levels of catalyst-directed diastereoselectivity (Scheme [2]).[25b]










Having established stereospecificity, it was posited that a large chiral counterion at ruthenium might bias partitioning of (Z)- and (E)-σ-crotylruthenium intermediates to favor the latter, potentially enabling anti-diastereo- and enantioselective butadiene-mediated crotylations. After much effort, it was found that the indicated C 1-symmetric BINOL-derived phosphate counterion, which is installed via acid-base reaction of the phosphoric acid with the precatalyst H2Ru(CO)(PPh3)3,[23] enabled anti-diastereo- and enantioselective crotylations of benzylic alcohols in the absence of a chiral phosphine ligand (Scheme [3]).[27a] Remarkably, upon use of the indicated tartaric acid derived phosphate counterion in combination with (S)-SEGPHOS, syn-diastereo- and enantioselective crotylation was observed.[27b] DFT calculations suggest that the more Lewis basic TADDOL-phosphate counterion stabilizes the transition structure en route to the syn-diastereomer by contributing a formyl hydrogen bond.[28] [29] The syn-diastereoselective reaction was used to construct the C12–C13 and C20–C21 stereodiads of 6-deoxyerythronolide B[8] and pladienolide B,[30] respectively.


These studies and prior work from our laboratory[31] impelled a systematic investigation of counterion effects in ruthenium-catalyzed C–C couplings of alcohols via hydrogen auto-transfer.[32] [33] In our previously developed ruthenium-catalyzed reactions, enhanced yields, isomer selectivities and stereoselectivities were observed upon use of iodide counterions in combination with JOSIPHOS ligands.[31a–c] It was recognized that the C 1-symmetry of JOSIPHOS[34] made the catalyst stereogenic at ruthenium. Single crystal X-ray diffraction analysis of the complexes RuX(CO)(JOSIPHOS)(η3-C3H5), where X = Cl, Br, I, revealed a halide-dependent diastereomeric preference in the solid state: whereas the iodide complex formed as a single diastereomer, the chloride and bromide complexes formed as diastereomeric mixtures.[32] While these preferences may reflect crystal-packing forces, computational studies corroborate iodide’s capacity to direct formation of a single diastereomeric chiral-at-metal complex and its capacity for formyl hydrogen bonding.[32] Quantum theory of atoms in molecules (QTAIM) analysis identified the bond critical point between the I···H atoms, which aligns with natural bond orbital (NBO) analysis. The fuzzy bond order (FBO) of 0.069 was computed, indicating an overall stabilization energy of 4.44 kcal/mol (E(2)-NBO) in the transition state for carbonyl addition via interaction of iodide’s lone pairs with the σ* orbital of the formyl CH bond (Figure [5]).[32]


These insights informed the design of an effective catalytic system for anti-diastereo- and enantioselective butadiene-mediated crotylation of alcohol proelectrophiles of exceptionally broad scope (Scheme [4]).[35a] Using the catalyst assembled from the iodide-bound ruthenium precatalyst RuI(CO)3(η3-C3H5) and the JOSIPHOS ligand SL-J502-01 (or its enantiomer SL-J502-02), primary alcohols and butadiene combine to form products of crotylation as single regioisomers with good to excellent control of anti-diastereo- and enantioselectivity. These reactions can be conducted on gram scale with relatively low loadings of catalyst (2 mol%).




Using the enantiomeric ruthenium catalysts, crotylations of chiral primary alcohol proelectrophiles occur with good levels of catalyst-directed diastereoselectivity. One powerful feature of this catalyst system resides in the ability to promote site-selective couplings of primary alcohols in the presence of unprotected secondary alcohols, which circumvents installation/removal of hydroxyl protecting groups. This capability stems from the relatively rapid kinetics of primary vs secondary alcohol dehydrogenation, even though dehydrogenation of the primary alcohol is more endothermic. This method was used to assemble previously reported substructures of spirastrellolide B (C9–C15, 3 vs 10 steps) and leucascandrolide A (C9–C15, 4 vs 6 or 8 steps),[35a] and was used to construct the C1–C19 and C23–C35 substructures of neaumycin B (not shown).[36] Finally, using methylallene (buta-1,2-diene) as the crotyl donor, an identical set of products can be formed with roughly equivalent yields and selectivities (not shown).[35a] However, the use of butadiene is preferred due to its greater abundance (>1 × 107 tons/year).[37]
Allene (propadiene) is an abundant byproduct of C3 petroleum cracking fractions (>1 × 105 tons/year)[37] of untapped potential, as the majority is hydrogenated and recycled to prepare propylene. Our laboratory described the first allene-mediated carbonyl allylations in 2007.[19a] Enantioselective allene-mediated allylations of aldehydes[38a] and ketones[38b] appeared in 2019 using iridium and copper catalysts, respectively.[38] Using the iodide-bound ruthenium-JOSIPHOS catalyst, we very recently developed the first enantioselective allene-mediated carbonyl allylations via hydrogen auto-transfer from alcohol proelectrophiles (Scheme [5]).[35b] As shown, these reactions are efficient at catalyst loadings as low as 1.5 mol% and, like the closely related butadiene-mediated crotylations, primary alcohols are subject to allylation in the presence of unprotected secondary alcohols. This method was used to construct previously reported substructures of spirastrellolide B and F (C7–C15, 7 vs 17 steps), cryptocarya diacetate (C3–C10, 3 vs 7 or 9 steps), mycolactone F (C8′–C14′, 1 vs 4 steps), and marinomycin A (C22–C28, 1 vs 9 steps) in fewer steps than previously possible (not shown).
# 3
Conclusion and Future Outlook


The methodological challenges posed by the stereochemical complexity of polyketide natural products continue to drive development of increasingly effective protocols for their preparation.[5] Whereas traditional approaches to polyketide construction are largely reliant on carbonyl additions mediated by premetalated reagents, our laboratory is advancing a broad, new family of hydrogen auto-transfer reactions that affect byproduct-free carbonyl addition from alcohol proelectrophiles using abundant π-unsaturated hydrocarbons as precursors to transient organometallic nucleophiles. Ruthenium(II) catalysts are especially effective in reactions of this type, as they are octahedral d 6 metal ions with unoccupied dx 2–y2 orbitals that facilitate alkoxide β-hydride elimination. The evolution of methods for butadiene-mediated crotylation described in this review culminates in the design of iodide-bound ruthenium JOSIPHOS complexes, which represent a new and highly effective class of enantioselective catalysts that are ‘chiral-at-metal-and-ligand’.[39] Such iodide-bound ruthenium JOSIPHOS complexes allow the reactivity of ruthenium to be leveraged vis-à-vis an expanded lexicon of asymmetric methods for the catalytic conversion of lower alcohols to higher alcohols, including methods for polyketide construction (Figure [6]).[17c] [40] It is the authors’ hope this monograph will inform future advances in the development of related atom-efficient methods for chemical synthesis.
#
#
Conflict of Interest
The authors declare no conflict of interest.
-
References
- 1a Saytzeff M, Saytzeff A, Sorokin B. Ber. Dtsch. Chem. Ges. 1876; 9: 33
- 1b Kanonnikoff J, Saytzeff A. Justus Liebigs Ann. Chem. 1877; 185: 148
- 1c Saytzeff M, Saytzeff A. Justus Liebigs Ann. Chem. 1877; 185: 151
- 1d Béhal A, Sommelet M. C. R. Hebd. Seances Acad. Sci. 1904; 138: 89
- 1e Mikhailov BM, Bubnov YN. Izv. Akad. Nauk SSSR, Ser. Khim. 1964; 1874
- 1f König K, Neumann WP. Tetrahedron Lett. 1967; 8: 493
- 1g Hosomi A, Sakurai H. Tetrahedron Lett. 1976; 17: 1295
- 1h Okude Y, Hirano S, Hiyama T, Nozaki H. J. Am. Chem. Soc. 1977; 99: 3179
- 2a Herold T, Hoffmann RW. Angew. Chem. Int. Ed. Engl. 1978; 17: 768
- 2b Hoffmann RW, Herold T. Chem. Ber. 1981; 114: 375
- 2c Brown HC, Jadhav PK. J. Am. Chem. Soc. 1983; 105: 2092
- 2d Brown HC, Bhat KS. J. Am. Chem. Soc. 1986; 108: 293
- 2e Brown HC, Bhat KS. J. Am. Chem. Soc. 1986; 108: 5919
- 2f Roush WR, Walts AE, Hoong LK. J. Am. Chem. Soc. 1985; 107: 8186
- 2g Roush WR, Halterman RL. J. Am. Chem. Soc. 1986; 108: 294
- 2h Roush WR, Ando K, Powers DB, Palkowitz AD, Halterman RL. J. Am. Chem. Soc. 1990; 112: 6339
- 2i Seebach D, Beck AK, Imwinkelzied R, Roggo S, Wonnacott A. Helv. Chim. Acta 1987; 70: 954
- 2j Riediker M, Duthaler RO. Angew. Chem. Int. Ed. Engl. 1989; 28: 494
- 2k Garcia J, Kim BM, Masamune S. J. Org. Chem. 1987; 52: 4831
- 2l Short RP, Masamune S. J. Am. Chem. Soc. 1989; 111: 1892
- 2m Reetz M. Pure Appl. Chem. 1988; 60: 1607
- 2n Corey EJ, Yu C.-M, Kim SS. J. Am. Chem. Soc. 1989; 111: 5495
- 2o Kinnaird JW. A, Ng PY, Kubota K, Wang X, Leighton JL. J. Am. Chem. Soc. 2002; 124: 7920
- 2p Hackman BM, Lombardi PJ, Leighton JL. Org. Lett. 2004; 6: 4375
- 3a Furuta K, Mouri M, Yamamoto H. Synlett 1991; 561
- 3b Costa AL, Piazza MG, Tagliavini E, Trombini C, Umani-Ronchi A. J. Am. Chem. Soc. 1993; 115: 7001
- 3c Keck GE, Tarbet KH, Geraci LS. J. Am. Chem. Soc. 1993; 115: 8467
- 3d Denmark SE, Coe DM, Pratt NE, Griedel BD. J. Org. Chem. 1994; 59: 6161
- 3e Denmark SE, Fu J. J. Am. Chem. Soc. 2001; 123: 9488
- 3f Bandini M, Cozzi PG, Melchiorre P, Umani-Ronchi A. Angew. Chem. Int. Ed. 1999; 38: 3357
- 3g Bandini M, Cozzi PG, Umani-Ronchi A. Angew. Chem. Int. Ed. 2000; 39: 2327
- 3h Majdecki M, Niedbała P, Jurczak J. ChemistrySelect 2020; 5: 6424
- 3i Majdecki M, Tyszka-Gumkowska A, Jurczak J. Org. Lett. 2020; 22: 8687
- 3j Majdecki M, Grodek P, Jurczak J. J. Org. Chem. 2021; 86: 995
- 4a Denmark SE, Fu J. Chem. Rev. 2003; 103: 2763
- 4b Hall DG. Synlett 2007; 1644
- 4c Hargaden GC, Guiry PJ. Adv. Synth. Catal. 2007; 349: 2407
- 4d Yus M, González-Gómez JC, Foubelo F. Chem. Rev. 2011; 111: 7774
- 4e Huo H.-X, Duvall JR, Huang M.-Y, Hong R. Org. Chem. Front. 2014; 1: 303
- 4f Tian Q, Zhang G. Synthesis 2016; 48: 4038
- 4g Spielmann K, Niel G, de Figueiredo RM, Campagne J.-M. Chem. Soc. Rev. 2018; 47: 1159
- 4h Rubtsov AE, Malkov AV. Synlett 2021; 32: 1397
- 5a Koskinen AM. P, Karisalmi K. Chem. Soc. Rev. 2005; 34: 677
- 5b Dechert-Schmitt A.-MR, Schmitt DC, Gao X, Itoh T, Krische MJ. Nat. Prod. Rep. 2014; 31: 504
- 5c Feng J, Kasun ZA, Krische MJ. J. Am. Chem. Soc. 2016; 138: 5467
- 5d Liu H, Lin S, Jacobsen KM, Poulsen TB. Angew. Chem. Int. Ed. 2019; 58: 13630
- 5e Doerksen RS, Meyer CC, Krische MJ. Angew. Chem. Int. Ed. 2019; 58: 14055
- 5f Friedrich RM, Friestad GK. Nat. Prod. Rep. 2020; 37: 1229
- 5g Sperandio C, Rodriguez J, Quintard A. Org. Biomol. Chem. 2020; 18: 1025
- 5h He Y, Song H, Chen J, Zhu S. Nat. Commun. 2021; 12: 638
- 5i Knochel P, Kremsmair A. Synfacts 2021; 17: 0405
- 6a Rohr J. Angew. Chem. Int. Ed. 2000; 39: 2847
- 6b Newman DJ, Cragg GM. J. Nat. Prod. 2007; 70: 461
- 6c Cragg GM, Grothaus PG, Newman DJ. Chem. Rev. 2009; 109: 3012
- 6d Dayan FE, Cantrell CL, Duke SO. Bioorg. Med. Chem. 2009; 17: 4022
- 6e Katz L, Baltz RH. J. Ind. Microbiol. Biotechnol. 2016; 43: 155
- 6f Beutler JA. Curr. Protoc. Pharmacol. 2019; 86: 1
- 6g Ray P, Lakshmanan V, Labbé JL, Craven KD. Front. Microbiol. 2020; 11: 622926
- 7 For literature pertaining to the isolation and total synthesis of roxaticin, see: Han SB, Hassan A, Kim I.-S, Krische MJ. J. Am. Chem. Soc. 2010; 132: 15559
- 8 For literature pertaining to the history and synthesis of erythromycin family natural products, see: Gao X, Woo SK, Krische MJ. J. Am. Chem. Soc. 2013; 135: 4223
- 9 For a brief historical perspective on the aldol reaction, see: Meyer CC, Ortiz E, Krische MJ. Chem. Rev. 2020; 120: 3721
- 10 The manufacturing route to eribulin comprises 65 steps, of which half are redox reactions and protecting group manipulations. For a review, see: Yu MJ, Zheng W, Seletsky BM. Nat. Prod. Rep. 2013; 30: 1158
- 11a Sait M, Hugenholtz P, Janssen PH. Environ. Microbiol. 2002; 4: 654
- 11b Doroghazi JR, Albright JC, Goering AW, Ju K.-S, Haines RH, Tchalukov KA, Labeda DP, Kelleher NL, Metcalf WW. Nat. Chem. Biol. 2014; 10: 963
- 12a Locey KJ, Lennon JT. Proc. Natl. Acad. Sci. U. S. A. 2016; 113: 5970
- 12b Stolz JF. FEMS Microbiol. Ecol. 2017; 93: 1
- 12c Escudeiro P, Henry CS, Dias RP. M. Curr. Res. Microb. Sci. 2022; 3: 100159
- 13a Louca S, Mazel F, Doebeli M, Parfrey LW. PLoS Biol. 2019; 17: e3000106
- 13b Wiens JJ. PLoS Biol. 2021; 19: e3001192
- 14a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
- 14b Lovering F. Med. Chem. Commun. 2013; 4: 515
- 14c Schneider N, Lowe DM, Sayle RA, Tarselli MA, Landrum GA. J. Med. Chem. 2016; 59: 4385
- 14d Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
- 14e Boström J, Brown DG, Young RJ, Keserü GM. Nat. Rev. Drug Discovery 2018; 17: 709
- 15a Noyori R, Kitamura M. Angew. Chem. Int. Ed. Engl. 1991; 30: 49
- 15b Soai K, Shibata T. In Comprehensive Asymmetric Catalysis, Vols. I–III. Jacobsen EN, Pfaltz A, Yamamoto H. Springer; Berlin: 1999: 911
- 15c Pu L, Yu H.-B. Chem. Rev. 2001; 101: 757
- 15d Trost BM, Weiss AH. Adv. Synth. Catal. 2009; 351: 963
- 15e Comprehensive Organic Synthesis, 2nd ed. Knochel P, Molander GA. Elsevier; Oxford: 2014
- 16a Krische MJ, Jang H.-Y. In Comprehensive Organometallic Chemistry III . Mingos M, Crabtree R. Elsevier; Oxford: 2006: 493
- 16b Metal Catalyzed Reductive C–C Bond Formation. In Topics in Current Chemistry, Vol. 279. Krische MJ. Springer; Berlin: 2007
- 16c Nguyen KD, Park BY, Luong T, Sato H, Garza VJ, Krische MJ. Science 2016; 354: aah5133
- 16d Holmes M, Schwartz LA, Krische MJ. Chem. Rev. 2018; 118: 6026
- 16e Xiang M, Pfaffinger DE, Krische MJ. Chem. Eur. J. 2021; 27: 13107
- 16f Ortiz E, Shezaf JZ, Chang Y.-H, Krische MJ. ACS Catal. 2022; 12: 8164
- 17a Kim SW, Zhang W, Krische MJ. Acc. Chem. Res. 2017; 50: 2371
- 17b Santana CG, Krische MJ. ACS Catal. 2021; 11: 5572
- 17c Ortiz E, Shezaf JZ, Shen W, Krische MJ. Chem. Sci. 2022; 13: 12625
- 18a Hamid MH. S. A, Slatford PA, Williams JM. J. Adv. Synth. Catal. 2007; 349: 1555
- 18b Guillena G, Ramón DJ, Yus M. Angew. Chem. Int. Ed. 2007; 46: 2358
- 18c Dobereiner GE, Crabtree RH. Chem. Rev. 2010; 110: 681
- 18d Bähn S, Imm S, Neubert L, Zhang M, Neumann H, Beller M. ChemCatChem 2011; 3: 1853
- 18e Yang Q, Wang Q, Yu Z. Chem. Soc. Rev. 2015; 44: 2305
- 18f Aitchison H, Wingad RL, Wass DF. ACS Catal. 2016; 6: 7125
- 18g Quintard A, Rodriguez J. Chem. Commun. 2016; 52: 10456
- 18h Reed-Berendt BG, Polidano K, Morrill LC. Org. Biomol. Chem. 2019; 17: 1595
- 18i Kwok T, Hoff O, Armstrong RJ, Donohoe TJ. Chem. Eur. J. 2020; 26: 12912
- 19a Bower JF, Skucas E, Patman RL, Krische MJ. J. Am. Chem. Soc. 2007; 129: 15134
- 19b Bower JF, Patman RL, Krische MJ. Org. Lett. 2008; 10: 1033
- 20a Kim IS, Ngai M.-Y, Krische MJ. J. Am. Chem. Soc. 2008; 130: 6340
- 20b Kim IS, Ngai M.-Y, Krische MJ. J. Am. Chem. Soc. 2008; 130: 14891
- 20c Kim IS, Han SB, Krische MJ. J. Am. Chem. Soc. 2009; 131: 2514
- 20d Lu Y, Kim IS, Hassan A, Del Valle DJ, Krische MJ. Angew. Chem. Int. Ed. 2009; 48: 5018
- 20e Hassan A, Lu Y, Krische MJ. Org. Lett. 2009; 11: 3112
- 20f Gao X, Townsend IA, Krische MJ. J. Org. Chem. 2011; 76: 2350
- 20g Gao X, Han H, Krische MJ. J. Am. Chem. Soc. 2011; 133: 12795
- 20h Schmitt DC, Dechert-Schmitt A.-MR, Krische MJ. Org. Lett. 2012; 14: 6302
- 20i Dechert-Schmitt A.-MR, Schmitt DC, Krische MJ. Angew. Chem. Int. Ed. 2013; 52: 3195
- 20j Shin I, Wang G, Krische MJ. Chem. Eur. J. 2014; 20: 13382
- 21a Shibahara F, Bower JF, Krische MJ. J. Am. Chem. Soc. 2008; 130: 6338
- 21b Shibahara F, Bower JF, Krische MJ. J. Am. Chem. Soc. 2008; 130: 14120
- 22a Hiraki K, Ochi N, Sasada Y, Hayashida H, Fuchita Y, Yamanaka S. J. Chem. Soc., Dalton Trans. 1985; 873
- 22b Hill AF, Ho CT, Wilton-Ely JD. E. T. Chem. Commun. 1997; 2207
- 22c Xue P, Bi S, Sung HH. Y, Williams ID, Lin Z, Jia G. Organometallics 2004; 23: 4735
- 23 The acid-base reaction of H2Ru(CO)(PPh3)3 with CF3CO2H to form ruthenium trifluoroacetate complexes has been described: Dobson A, Robinson SR, Uttley MF. J. Chem. Soc., Dalton Trans. 1975; 370
- 24a Sato F, Kusakabe M, Kobayashi Y. J. Chem. Soc., Chem. Commun. 1984; 1130
- 24b Helm MD, Mayer P, Knochel P. Chem. Commun. 2008; 1916
- 25a Zbieg JR, Moran J, Krische MJ. J. Am. Chem. Soc. 2011; 133: 10582
- 25b Pantin M, Hubert JG, Söhnel T, Brimble MA, Furkert DP. J. Org. Chem. 2017; 82: 11225
- 26a Del Valle DJ, Krische MJ. J. Am. Chem. Soc. 2013; 135: 10986
- 26b Schempp TT, Krische MJ. J. Am. Chem. Soc. 2022; 144: 1016
- 27a Zbieg JR, Yamaguchi E, McInturff EL, Krische MJ. Science 2012; 336: 324
- 27b McInturff EL, Yamaguchi E, Krische MJ. J. Am. Chem. Soc. 2012; 134: 20628
- 28 Grayson MN, Krische MJ, Houk KN. J. Am. Chem. Soc. 2015; 137: 8838
- 29a Corey EJ, Lee TW. Chem. Commun. 2001; 1321
- 29b Thakur TS, Kirchner MT, Bläser D, Boese R, Desiraju GR. Phys. Chem. Chem. Phys. 2011; 13: 14076
- 30 Yoo M, Krische MJ. Angew. Chem. Int. Ed. 2021; 60: 13923
- 31a Liang T, Nguyen KD, Zhang W, Krische MJ. J. Am. Chem. Soc. 2015; 137: 3161
- 31b Liang T, Zhang W, Chen T.-Y, Nguyen KD, Krische MJ. J. Am. Chem. Soc. 2015; 137: 13066
- 31c Xiang M, Ghosh A, Krische MJ. J. Am. Chem. Soc. 2021; 143: 2838
- 31d Xiang M, Pfaffinger DE, Ortiz E, Brito GA, Krische MJ. J. Am. Chem. Soc. 2021; 143: 8849
- 32 Ortiz E, Shezaf JZ, Chang Y.-H, Gonçalves TP, Huang K.-W, Krische MJ. J. Am. Chem. Soc. 2021; 143: 16709
- 33a Maitlis PM, Haynes A, James BR, Catellani M, Chiusoli GP. Dalton Trans. 2004; 3409
- 33b Fagnou K, Lautens M. Angew. Chem. Int. Ed. 2002; 41: 26
- 34 For a review on JOSIPHOS ligands, see: Blaser H.-U, Brieden W, Pugin B, Spindler F, Studer M, Tognai A. Top. Catal. 2002; 19: 3
- 35a Ortiz E, Spinello BJ, Cho Y, Wu J, Krische MJ. Angew. Chem. Int. Ed. 2022; 61: e202212814
- 35b Saludares C, Ortiz E, Santana CG, Spinello BJ, Krische MJ. ACS Catal. 2023; 13: 1662
- 36 Liang X, Yoo M, Schempp T, Maejima S, Krische MJ. Angew. Chem. Int. Ed. 2022; 61: e202214786
- 37a Kirk-Othmer Encyclopedia of Chemical Technology [Online]; John Wiley & Sons (accessed Feb 8, 2023)
- 37b Ullmann's Encyclopedia of Industrial Chemistry [Online]; Wiley-VCH (accessed Feb 8, 2023)
- 38a Kim SW, Meyer CC, Mai BK, Liu P, Krische MJ. ACS Catal. 2019; 9: 9158
- 38b Liu RY, Zhou Y, Yang Y, Buchwald SL. J. Am. Chem. Soc. 2019; 141: 2251
- 39a Knight PD, Scott P. Coord. Chem. Rev. 2003; 242: 125
- 39b Bauer EB. Chem. Soc. Rev. 2012; 41: 3153
- 39c Gong L, Chen L.-A, Meggers E. Angew. Chem. Int. Ed. 2014; 53: 10868
- 40a Nguyen KD, Herkommer D, Krische MJ. J. Am. Chem. Soc. 2016; 138: 5238
- 40b Ortiz E, Chang Y.-H, Shezaf JZ, Shen W, Krische MJ. J. Am. Chem. Soc. 2022; 144: 8861
For selected examples of chiral reagents for asymmetric carbonyl allylmetalation, see:
For selected reviews on catalytic enantioselective carbonyl allylation and crotylation, see:
For selected reviews on polyketide total synthesis, see:
For selected reviews on polyketide natural products in pharmaceutical and agrochemical research, see:
With the exception of eribulin, all polyketides used in human medicine derive from soil bacteria, yet <5% of soil bacteria are amenable to culture with many phyla having eluded culture and the few bacteria amenable to culture express <10% of their biosynthetic genes:
Lower estimates of microbial diversity appear to undercount bacterial species associated with higher organisms:
Although saturated, stereochemically rich small molecules (like polyketides) have a higher success rate than related sp2-rich small-molecule clinical candidates, new synthetic methods to prepare compounds of this type are underutilized by medicinal chemists:
For selected reviews on enantioselective carbonyl addition, see:
For selected reviews on metal-catalyzed carbonyl reductive coupling, see:
For selected reviews on hydrogen auto-transfer for the conversion of lower alcohols to higher alcohols, see:
For selected reviews on ‘borrowing hydrogen’ for hydroxyl substitution, see:
For enantioselective iridium-catalyzed carbonyl allylation and crotylation, see:
For stoichiometric reactions of HXRu(CO)(PR3)3 (X = Cl, Br) with allenes or dienes to form discrete π-allylruthenium complexes, see:
Related crotylmagnesium and crotylzinc reagents bearing 2-trimethylsilyl groups react with aldehydes to give the syn-diastereomers:
For selected studies of formyl CH hydrogen bonding, see:
For selected reviews on halide counterion effects in metal catalysis, see:
Production data are taken from:
or
For selected reviews on enantioselective catalysis via chiral-at-metal complexes, see:
For other enantioselective ruthenium-catalyzed carbonyl additions via hydrogen auto-transfer that are relevant to polyketide construction, see:
Corresponding Author
Publikationsverlauf
Eingereicht: 16. Dezember 2022
Angenommen nach Revision: 16. Januar 2023
Artikel online veröffentlicht:
20. Februar 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Saytzeff M, Saytzeff A, Sorokin B. Ber. Dtsch. Chem. Ges. 1876; 9: 33
- 1b Kanonnikoff J, Saytzeff A. Justus Liebigs Ann. Chem. 1877; 185: 148
- 1c Saytzeff M, Saytzeff A. Justus Liebigs Ann. Chem. 1877; 185: 151
- 1d Béhal A, Sommelet M. C. R. Hebd. Seances Acad. Sci. 1904; 138: 89
- 1e Mikhailov BM, Bubnov YN. Izv. Akad. Nauk SSSR, Ser. Khim. 1964; 1874
- 1f König K, Neumann WP. Tetrahedron Lett. 1967; 8: 493
- 1g Hosomi A, Sakurai H. Tetrahedron Lett. 1976; 17: 1295
- 1h Okude Y, Hirano S, Hiyama T, Nozaki H. J. Am. Chem. Soc. 1977; 99: 3179
- 2a Herold T, Hoffmann RW. Angew. Chem. Int. Ed. Engl. 1978; 17: 768
- 2b Hoffmann RW, Herold T. Chem. Ber. 1981; 114: 375
- 2c Brown HC, Jadhav PK. J. Am. Chem. Soc. 1983; 105: 2092
- 2d Brown HC, Bhat KS. J. Am. Chem. Soc. 1986; 108: 293
- 2e Brown HC, Bhat KS. J. Am. Chem. Soc. 1986; 108: 5919
- 2f Roush WR, Walts AE, Hoong LK. J. Am. Chem. Soc. 1985; 107: 8186
- 2g Roush WR, Halterman RL. J. Am. Chem. Soc. 1986; 108: 294
- 2h Roush WR, Ando K, Powers DB, Palkowitz AD, Halterman RL. J. Am. Chem. Soc. 1990; 112: 6339
- 2i Seebach D, Beck AK, Imwinkelzied R, Roggo S, Wonnacott A. Helv. Chim. Acta 1987; 70: 954
- 2j Riediker M, Duthaler RO. Angew. Chem. Int. Ed. Engl. 1989; 28: 494
- 2k Garcia J, Kim BM, Masamune S. J. Org. Chem. 1987; 52: 4831
- 2l Short RP, Masamune S. J. Am. Chem. Soc. 1989; 111: 1892
- 2m Reetz M. Pure Appl. Chem. 1988; 60: 1607
- 2n Corey EJ, Yu C.-M, Kim SS. J. Am. Chem. Soc. 1989; 111: 5495
- 2o Kinnaird JW. A, Ng PY, Kubota K, Wang X, Leighton JL. J. Am. Chem. Soc. 2002; 124: 7920
- 2p Hackman BM, Lombardi PJ, Leighton JL. Org. Lett. 2004; 6: 4375
- 3a Furuta K, Mouri M, Yamamoto H. Synlett 1991; 561
- 3b Costa AL, Piazza MG, Tagliavini E, Trombini C, Umani-Ronchi A. J. Am. Chem. Soc. 1993; 115: 7001
- 3c Keck GE, Tarbet KH, Geraci LS. J. Am. Chem. Soc. 1993; 115: 8467
- 3d Denmark SE, Coe DM, Pratt NE, Griedel BD. J. Org. Chem. 1994; 59: 6161
- 3e Denmark SE, Fu J. J. Am. Chem. Soc. 2001; 123: 9488
- 3f Bandini M, Cozzi PG, Melchiorre P, Umani-Ronchi A. Angew. Chem. Int. Ed. 1999; 38: 3357
- 3g Bandini M, Cozzi PG, Umani-Ronchi A. Angew. Chem. Int. Ed. 2000; 39: 2327
- 3h Majdecki M, Niedbała P, Jurczak J. ChemistrySelect 2020; 5: 6424
- 3i Majdecki M, Tyszka-Gumkowska A, Jurczak J. Org. Lett. 2020; 22: 8687
- 3j Majdecki M, Grodek P, Jurczak J. J. Org. Chem. 2021; 86: 995
- 4a Denmark SE, Fu J. Chem. Rev. 2003; 103: 2763
- 4b Hall DG. Synlett 2007; 1644
- 4c Hargaden GC, Guiry PJ. Adv. Synth. Catal. 2007; 349: 2407
- 4d Yus M, González-Gómez JC, Foubelo F. Chem. Rev. 2011; 111: 7774
- 4e Huo H.-X, Duvall JR, Huang M.-Y, Hong R. Org. Chem. Front. 2014; 1: 303
- 4f Tian Q, Zhang G. Synthesis 2016; 48: 4038
- 4g Spielmann K, Niel G, de Figueiredo RM, Campagne J.-M. Chem. Soc. Rev. 2018; 47: 1159
- 4h Rubtsov AE, Malkov AV. Synlett 2021; 32: 1397
- 5a Koskinen AM. P, Karisalmi K. Chem. Soc. Rev. 2005; 34: 677
- 5b Dechert-Schmitt A.-MR, Schmitt DC, Gao X, Itoh T, Krische MJ. Nat. Prod. Rep. 2014; 31: 504
- 5c Feng J, Kasun ZA, Krische MJ. J. Am. Chem. Soc. 2016; 138: 5467
- 5d Liu H, Lin S, Jacobsen KM, Poulsen TB. Angew. Chem. Int. Ed. 2019; 58: 13630
- 5e Doerksen RS, Meyer CC, Krische MJ. Angew. Chem. Int. Ed. 2019; 58: 14055
- 5f Friedrich RM, Friestad GK. Nat. Prod. Rep. 2020; 37: 1229
- 5g Sperandio C, Rodriguez J, Quintard A. Org. Biomol. Chem. 2020; 18: 1025
- 5h He Y, Song H, Chen J, Zhu S. Nat. Commun. 2021; 12: 638
- 5i Knochel P, Kremsmair A. Synfacts 2021; 17: 0405
- 6a Rohr J. Angew. Chem. Int. Ed. 2000; 39: 2847
- 6b Newman DJ, Cragg GM. J. Nat. Prod. 2007; 70: 461
- 6c Cragg GM, Grothaus PG, Newman DJ. Chem. Rev. 2009; 109: 3012
- 6d Dayan FE, Cantrell CL, Duke SO. Bioorg. Med. Chem. 2009; 17: 4022
- 6e Katz L, Baltz RH. J. Ind. Microbiol. Biotechnol. 2016; 43: 155
- 6f Beutler JA. Curr. Protoc. Pharmacol. 2019; 86: 1
- 6g Ray P, Lakshmanan V, Labbé JL, Craven KD. Front. Microbiol. 2020; 11: 622926
- 7 For literature pertaining to the isolation and total synthesis of roxaticin, see: Han SB, Hassan A, Kim I.-S, Krische MJ. J. Am. Chem. Soc. 2010; 132: 15559
- 8 For literature pertaining to the history and synthesis of erythromycin family natural products, see: Gao X, Woo SK, Krische MJ. J. Am. Chem. Soc. 2013; 135: 4223
- 9 For a brief historical perspective on the aldol reaction, see: Meyer CC, Ortiz E, Krische MJ. Chem. Rev. 2020; 120: 3721
- 10 The manufacturing route to eribulin comprises 65 steps, of which half are redox reactions and protecting group manipulations. For a review, see: Yu MJ, Zheng W, Seletsky BM. Nat. Prod. Rep. 2013; 30: 1158
- 11a Sait M, Hugenholtz P, Janssen PH. Environ. Microbiol. 2002; 4: 654
- 11b Doroghazi JR, Albright JC, Goering AW, Ju K.-S, Haines RH, Tchalukov KA, Labeda DP, Kelleher NL, Metcalf WW. Nat. Chem. Biol. 2014; 10: 963
- 12a Locey KJ, Lennon JT. Proc. Natl. Acad. Sci. U. S. A. 2016; 113: 5970
- 12b Stolz JF. FEMS Microbiol. Ecol. 2017; 93: 1
- 12c Escudeiro P, Henry CS, Dias RP. M. Curr. Res. Microb. Sci. 2022; 3: 100159
- 13a Louca S, Mazel F, Doebeli M, Parfrey LW. PLoS Biol. 2019; 17: e3000106
- 13b Wiens JJ. PLoS Biol. 2021; 19: e3001192
- 14a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
- 14b Lovering F. Med. Chem. Commun. 2013; 4: 515
- 14c Schneider N, Lowe DM, Sayle RA, Tarselli MA, Landrum GA. J. Med. Chem. 2016; 59: 4385
- 14d Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
- 14e Boström J, Brown DG, Young RJ, Keserü GM. Nat. Rev. Drug Discovery 2018; 17: 709
- 15a Noyori R, Kitamura M. Angew. Chem. Int. Ed. Engl. 1991; 30: 49
- 15b Soai K, Shibata T. In Comprehensive Asymmetric Catalysis, Vols. I–III. Jacobsen EN, Pfaltz A, Yamamoto H. Springer; Berlin: 1999: 911
- 15c Pu L, Yu H.-B. Chem. Rev. 2001; 101: 757
- 15d Trost BM, Weiss AH. Adv. Synth. Catal. 2009; 351: 963
- 15e Comprehensive Organic Synthesis, 2nd ed. Knochel P, Molander GA. Elsevier; Oxford: 2014
- 16a Krische MJ, Jang H.-Y. In Comprehensive Organometallic Chemistry III . Mingos M, Crabtree R. Elsevier; Oxford: 2006: 493
- 16b Metal Catalyzed Reductive C–C Bond Formation. In Topics in Current Chemistry, Vol. 279. Krische MJ. Springer; Berlin: 2007
- 16c Nguyen KD, Park BY, Luong T, Sato H, Garza VJ, Krische MJ. Science 2016; 354: aah5133
- 16d Holmes M, Schwartz LA, Krische MJ. Chem. Rev. 2018; 118: 6026
- 16e Xiang M, Pfaffinger DE, Krische MJ. Chem. Eur. J. 2021; 27: 13107
- 16f Ortiz E, Shezaf JZ, Chang Y.-H, Krische MJ. ACS Catal. 2022; 12: 8164
- 17a Kim SW, Zhang W, Krische MJ. Acc. Chem. Res. 2017; 50: 2371
- 17b Santana CG, Krische MJ. ACS Catal. 2021; 11: 5572
- 17c Ortiz E, Shezaf JZ, Shen W, Krische MJ. Chem. Sci. 2022; 13: 12625
- 18a Hamid MH. S. A, Slatford PA, Williams JM. J. Adv. Synth. Catal. 2007; 349: 1555
- 18b Guillena G, Ramón DJ, Yus M. Angew. Chem. Int. Ed. 2007; 46: 2358
- 18c Dobereiner GE, Crabtree RH. Chem. Rev. 2010; 110: 681
- 18d Bähn S, Imm S, Neubert L, Zhang M, Neumann H, Beller M. ChemCatChem 2011; 3: 1853
- 18e Yang Q, Wang Q, Yu Z. Chem. Soc. Rev. 2015; 44: 2305
- 18f Aitchison H, Wingad RL, Wass DF. ACS Catal. 2016; 6: 7125
- 18g Quintard A, Rodriguez J. Chem. Commun. 2016; 52: 10456
- 18h Reed-Berendt BG, Polidano K, Morrill LC. Org. Biomol. Chem. 2019; 17: 1595
- 18i Kwok T, Hoff O, Armstrong RJ, Donohoe TJ. Chem. Eur. J. 2020; 26: 12912
- 19a Bower JF, Skucas E, Patman RL, Krische MJ. J. Am. Chem. Soc. 2007; 129: 15134
- 19b Bower JF, Patman RL, Krische MJ. Org. Lett. 2008; 10: 1033
- 20a Kim IS, Ngai M.-Y, Krische MJ. J. Am. Chem. Soc. 2008; 130: 6340
- 20b Kim IS, Ngai M.-Y, Krische MJ. J. Am. Chem. Soc. 2008; 130: 14891
- 20c Kim IS, Han SB, Krische MJ. J. Am. Chem. Soc. 2009; 131: 2514
- 20d Lu Y, Kim IS, Hassan A, Del Valle DJ, Krische MJ. Angew. Chem. Int. Ed. 2009; 48: 5018
- 20e Hassan A, Lu Y, Krische MJ. Org. Lett. 2009; 11: 3112
- 20f Gao X, Townsend IA, Krische MJ. J. Org. Chem. 2011; 76: 2350
- 20g Gao X, Han H, Krische MJ. J. Am. Chem. Soc. 2011; 133: 12795
- 20h Schmitt DC, Dechert-Schmitt A.-MR, Krische MJ. Org. Lett. 2012; 14: 6302
- 20i Dechert-Schmitt A.-MR, Schmitt DC, Krische MJ. Angew. Chem. Int. Ed. 2013; 52: 3195
- 20j Shin I, Wang G, Krische MJ. Chem. Eur. J. 2014; 20: 13382
- 21a Shibahara F, Bower JF, Krische MJ. J. Am. Chem. Soc. 2008; 130: 6338
- 21b Shibahara F, Bower JF, Krische MJ. J. Am. Chem. Soc. 2008; 130: 14120
- 22a Hiraki K, Ochi N, Sasada Y, Hayashida H, Fuchita Y, Yamanaka S. J. Chem. Soc., Dalton Trans. 1985; 873
- 22b Hill AF, Ho CT, Wilton-Ely JD. E. T. Chem. Commun. 1997; 2207
- 22c Xue P, Bi S, Sung HH. Y, Williams ID, Lin Z, Jia G. Organometallics 2004; 23: 4735
- 23 The acid-base reaction of H2Ru(CO)(PPh3)3 with CF3CO2H to form ruthenium trifluoroacetate complexes has been described: Dobson A, Robinson SR, Uttley MF. J. Chem. Soc., Dalton Trans. 1975; 370
- 24a Sato F, Kusakabe M, Kobayashi Y. J. Chem. Soc., Chem. Commun. 1984; 1130
- 24b Helm MD, Mayer P, Knochel P. Chem. Commun. 2008; 1916
- 25a Zbieg JR, Moran J, Krische MJ. J. Am. Chem. Soc. 2011; 133: 10582
- 25b Pantin M, Hubert JG, Söhnel T, Brimble MA, Furkert DP. J. Org. Chem. 2017; 82: 11225
- 26a Del Valle DJ, Krische MJ. J. Am. Chem. Soc. 2013; 135: 10986
- 26b Schempp TT, Krische MJ. J. Am. Chem. Soc. 2022; 144: 1016
- 27a Zbieg JR, Yamaguchi E, McInturff EL, Krische MJ. Science 2012; 336: 324
- 27b McInturff EL, Yamaguchi E, Krische MJ. J. Am. Chem. Soc. 2012; 134: 20628
- 28 Grayson MN, Krische MJ, Houk KN. J. Am. Chem. Soc. 2015; 137: 8838
- 29a Corey EJ, Lee TW. Chem. Commun. 2001; 1321
- 29b Thakur TS, Kirchner MT, Bläser D, Boese R, Desiraju GR. Phys. Chem. Chem. Phys. 2011; 13: 14076
- 30 Yoo M, Krische MJ. Angew. Chem. Int. Ed. 2021; 60: 13923
- 31a Liang T, Nguyen KD, Zhang W, Krische MJ. J. Am. Chem. Soc. 2015; 137: 3161
- 31b Liang T, Zhang W, Chen T.-Y, Nguyen KD, Krische MJ. J. Am. Chem. Soc. 2015; 137: 13066
- 31c Xiang M, Ghosh A, Krische MJ. J. Am. Chem. Soc. 2021; 143: 2838
- 31d Xiang M, Pfaffinger DE, Ortiz E, Brito GA, Krische MJ. J. Am. Chem. Soc. 2021; 143: 8849
- 32 Ortiz E, Shezaf JZ, Chang Y.-H, Gonçalves TP, Huang K.-W, Krische MJ. J. Am. Chem. Soc. 2021; 143: 16709
- 33a Maitlis PM, Haynes A, James BR, Catellani M, Chiusoli GP. Dalton Trans. 2004; 3409
- 33b Fagnou K, Lautens M. Angew. Chem. Int. Ed. 2002; 41: 26
- 34 For a review on JOSIPHOS ligands, see: Blaser H.-U, Brieden W, Pugin B, Spindler F, Studer M, Tognai A. Top. Catal. 2002; 19: 3
- 35a Ortiz E, Spinello BJ, Cho Y, Wu J, Krische MJ. Angew. Chem. Int. Ed. 2022; 61: e202212814
- 35b Saludares C, Ortiz E, Santana CG, Spinello BJ, Krische MJ. ACS Catal. 2023; 13: 1662
- 36 Liang X, Yoo M, Schempp T, Maejima S, Krische MJ. Angew. Chem. Int. Ed. 2022; 61: e202214786
- 37a Kirk-Othmer Encyclopedia of Chemical Technology [Online]; John Wiley & Sons (accessed Feb 8, 2023)
- 37b Ullmann's Encyclopedia of Industrial Chemistry [Online]; Wiley-VCH (accessed Feb 8, 2023)
- 38a Kim SW, Meyer CC, Mai BK, Liu P, Krische MJ. ACS Catal. 2019; 9: 9158
- 38b Liu RY, Zhou Y, Yang Y, Buchwald SL. J. Am. Chem. Soc. 2019; 141: 2251
- 39a Knight PD, Scott P. Coord. Chem. Rev. 2003; 242: 125
- 39b Bauer EB. Chem. Soc. Rev. 2012; 41: 3153
- 39c Gong L, Chen L.-A, Meggers E. Angew. Chem. Int. Ed. 2014; 53: 10868
- 40a Nguyen KD, Herkommer D, Krische MJ. J. Am. Chem. Soc. 2016; 138: 5238
- 40b Ortiz E, Chang Y.-H, Shezaf JZ, Shen W, Krische MJ. J. Am. Chem. Soc. 2022; 144: 8861
For selected examples of chiral reagents for asymmetric carbonyl allylmetalation, see:
For selected reviews on catalytic enantioselective carbonyl allylation and crotylation, see:
For selected reviews on polyketide total synthesis, see:
For selected reviews on polyketide natural products in pharmaceutical and agrochemical research, see:
With the exception of eribulin, all polyketides used in human medicine derive from soil bacteria, yet <5% of soil bacteria are amenable to culture with many phyla having eluded culture and the few bacteria amenable to culture express <10% of their biosynthetic genes:
Lower estimates of microbial diversity appear to undercount bacterial species associated with higher organisms:
Although saturated, stereochemically rich small molecules (like polyketides) have a higher success rate than related sp2-rich small-molecule clinical candidates, new synthetic methods to prepare compounds of this type are underutilized by medicinal chemists:
For selected reviews on enantioselective carbonyl addition, see:
For selected reviews on metal-catalyzed carbonyl reductive coupling, see:
For selected reviews on hydrogen auto-transfer for the conversion of lower alcohols to higher alcohols, see:
For selected reviews on ‘borrowing hydrogen’ for hydroxyl substitution, see:
For enantioselective iridium-catalyzed carbonyl allylation and crotylation, see:
For stoichiometric reactions of HXRu(CO)(PR3)3 (X = Cl, Br) with allenes or dienes to form discrete π-allylruthenium complexes, see:
Related crotylmagnesium and crotylzinc reagents bearing 2-trimethylsilyl groups react with aldehydes to give the syn-diastereomers:
For selected studies of formyl CH hydrogen bonding, see:
For selected reviews on halide counterion effects in metal catalysis, see:
Production data are taken from:
or
For selected reviews on enantioselective catalysis via chiral-at-metal complexes, see:
For other enantioselective ruthenium-catalyzed carbonyl additions via hydrogen auto-transfer that are relevant to polyketide construction, see:


Eliezer Ortiz obtained a B.S. in biochemistry with honors from the University of Texas at San Antonio (2019), where he conducted research under the instruction of Professor Doug E. Frantz and received the Dr. Thyagarajan Award for Excellence in Organic Chemistry. After spending a summer as a Postbaccalaureate Research Fellow at UTSA, he entered the doctoral degree program at the University of Texas at Austin in the laboratory of Professor Michael J. Krische in Fall 2019, where he is developing enantioselective metal-catalyzed carbonyl reductive couplings of π-unsaturated feedstocks.
Connor G. Saludares obtained a B.A. degree in chemistry from Occidental College (2021), where he conducted research under the guidance of Prof. Raul Navarro. In Fall 2021, he entered the doctoral degree program at the University of Texas at Austin as a NIH Pre-Doctoral Fellow in the laboratory of Prof. Michael J. Krische. His research is focused on the development of enantioselective metal-catalyzed carbonyl reductive coupling of π-unsaturated feedstocks.
Jessica Wu obtained a B.S. in chemistry with distinction from the University of Wisconsin-Madison (2018), where she conducted research under the supervision of Professor Weiping Tang. In Fall 2020, she entered the doctoral degree program at the University of Texas at Austin as a Provost’s Graduate Excellence Fellow in the laboratory of Professor Michael J. Krische, where she is developing metal-catalyzed carbonyl reductive couplings and investigating their application to the total synthesis of type I polyketide natural products.
Yoon Cho obtained a B.S. in chemistry from the Wheaton College (2020), where he conducted research under the supervision of Professor Allison R. Dick. In Fall 2020, he entered the doctoral degree program at the University of Texas at Austin in the laboratory of Professor Michael J. Krische, where he is developing metal-catalyzed carbonyl reductive couplings of π-unsaturated feedstocks.
Catherine Gazolla Santana obtained a B.S. in chemical engineering from the University of São Paulo (2019), where she conducted research under the instruction of Professor Eduardo Triboni. In Fall 2021 she entered the doctoral degree program at the University of Texas at Austin in the laboratory of Professor Michael J. Krische, where she is developing enantioselective metal-catalyzed carbonyl reductive couplings of π-unsaturated feedstocks.





















