Subscribe to RSS
DOI: 10.1055/s-0042-1751458
Divergent Synthesis of Isochroman-4-ols, 1,3-Dihydroisobenzofurans, and Tetrahydro-2H-indeno[2,1-b]furan-2-ones via Epoxidation/Cyclization Strategy of (E)-(2-Stilbenyl/Styrenyl)methanols
This research project is supported by the Thailand Science Research and Innovation (TSRI), TSRI-Chulabhorn Research Institute (Grant No. 36824/4274394 and 36827/4274407), the TSRI-Chulabhorn Graduate Institute, Chulabhorn Royal Academy (FRB660044/0240 Project Code 180874), and by a grant from the Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI.
Abstract
Starting from (E)-(2-stilbenyl/styrenyl)methanols, two distinct scaffolds, namely isochroman-4-ols and 1,3-dihydroisobenzofurans (phthalans), could be synthesized via an epoxidation/cyclization strategy. Indenes, readily accessible from the same starting materials, could undergo epoxidation/ring-opening/cyclization to provide tetrahydro-2H-indeno[2,1-b]furan-2-ones. Stilbene/styrene/indene epoxidation by m-CPBA or DMDO converted the nucleophilic olefin into the electrophilic epoxide, which subsequently underwent the regioselective ring-opening either by the hydroxy or the ester group to furnish the corresponding products with stereocontrol at the newly formed stereogenic centers. The reaction proceeded under substrate control to yield each product type exclusively.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751458.
- Supporting Information
Publication History
Received: 28 February 2023
Accepted after revision: 04 May 2023
Article published online:
01 June 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Rotella DP. Heterocycles in Drug Discovery: Properties and Preparation. In Applications of Heterocycles in the Design of Drugs and Agricultural Products, Advances in Heterocyclic Chemistry, 1st ed., Vol. 134. Meanwell NA, Lolli ML. Academic Press; Cambridge USA: 2021: 149-183
- 2 Orfali RS, Aly AH, Ebrahim W, Rudiyansyah, Proksch P. Phytochem. Lett. 2015; 13: 234
- 3 Wang C, Wei G, Yang X, Yao H, Jiang J, Liu J, Shen M, Wu X, Xu J. Org. Biomol. Chem. 2014; 12: 7338
- 4a Karmakar R, Pahari P, Mal D. Chem. Rev. 2014; 114: 6213 ; and references cited therein
- 4b Ilya E, Kulikova L, Van der Eycken EV, Voskressensky L. ChemistryOpen 2018; 11: 842 ; and references cited therein
- 4c Petracek FJ, Sugisaka N, Klohs MW, Parker RG, Bordner J, Roberts JD. Tetrahedron Lett. 1970; 707
- 4d Saxena M, Gaur S, Prathipati P, Saxena AK. Bioorg. Med. Chem. Lett. 2006; 14: 8249
- 5 Harper JK, Arif AM, Ford EJ, Strobel GA, Porco JA. Jr, Tomer DP, Oneill KL, Heider EM, Grant DM. Tetrahedron 2003; 59: 2471
- 6a Liu J, Zheng H.-X, Yao C.-Z, Sun B.-F, Kang Y.-B. J. Am. Chem. Soc. 2016; 138: 3294
- 6b Ha TM, Wang Q, Zhu J. Chem. Commun. 2016; 52: 11100
- 6c Pramanik C, Hivarekar RR, Deshmukh SS, Tripathy NK, Kotharkar S, Chaudhari A, Gurjar MK. Org. Process Res. Dev. 2012; 16: 824
- 6d Bøgesø KP, Sánchez C. The Discovery of Citalopram and Its Refinement to Escitalopram. In Analogue-Based Drug Discovery III. Fischer J, Ganellin CR, Rotella DP. Wiley-VCH; Weinheim: 2013. 269 ; and references cited therein
- 6e Sánchez C. Basic Clin. Pharmacol. Toxicol. 2006; 99: 91 ; and references cited therein
- 6f Pollock BG. Expert Opin. Pharmacother. 2001; 2: 681 ; and references cited therein
- 6g Bezchlibnyk-Butler K, Aleksic I, Kennedy SH. J. Psychiatry Neurosci. 2000; 25: 241 ; and references cited therein
- 7a Camacho-Hernandez GA, Casiraghi A, Rudin D, Luethi D, Ku TC, Guthrie DA, Straniero V, Valoti E, Schütz GJ, Sitte HH, Newman AH. RSC Med. Chem. 2021; 12: 1174
- 7b Eidal JN. N, Andersen J, Kristensen AS, Jørgensen AM, Bang-Andersen B, Jørgensen M, Strømgaard K. J. Med. Chem. 2008; 51: 3045
- 8 Wang Q, Hu Z, Li X, Wang A, Wu H, Liu J, Cao S, Liu Q. J. Nat. Prod. 2018; 81: 2531
- 9a Krasylenko Y, Komis G, Hlynska S, Vavrdová T, Ovečka M, Pospíšil T, Šamaj J. Front. Plant Sci. 2021; 12: 675981
- 9b Tumer TB, Yilmaz B, Ozleyen A, Kurt B, Tok TT, Taskin KM, Kulabas SS. Comput. Biol. Chem. 2018; 76: 179
- 9c Bromhead LJ, Visser J, McErlean CS. P. J. Org. Chem. 2014; 79: 1516
- 9d Besserer A, Bécard G, Jauneau A, Roux C, Séjalon-Delmas N. Plant Physiol. 2008; 148: 402
- 9e Mangnus EM, Dommerholt FJ, de Jong RL. P, Zwanenburg B. J. Agric. Food Chem. 1992; 40: 1230
- 10a Jongcharoenkamol J, Chuathong P, Amako Y, Kono M, Poonswat P, Ruchirawat S, Ploypradith P. J. Org. Chem. 2018; 83: 13184
- 10b Sarnpitak P, Trongchit K, Kostenko Y, Sathalalai S, Gleeson MP, Ruchirawat S, Ploypradith P. J. Org. Chem. 2013; 78: 8281
- 11 Lekky A, Ruengsatra T, Ruchirawat S, Ploypradith P. J. Org. Chem. 2019; 84: 5277
- 12 Songthammawat P, Phumjan T, Ruchirawat S, Ploypradith P. Synlett 2022; 33: 1312
- 13a Xing L, Zhang Y, Zhang Y, Ai Z, Li X, Du Y, Deng J, Zhao K. J. Org. Chem. 2019; 84: 13832
- 13b Chang M.-Y, Hsiao Y.-T, Lai K.-H. J. Org. Chem. 2018; 83: 14110
- 13c Han X, Wu H, Dong C, Tien P, Xie W, Wu S, Zhou H.-B. RSC Adv. 2015; 5: 10005
- 13d Ghosh M, Singha R, Dhara S, Ray JK. RSC Adv. 2015; 5: 85911
- 13e Gabriele B, Salerno G, Fazio A, Pittelli R. Tetrahedron 2003; 59: 6251
- 14a Nakashima Y, Hirata G, Sheppard TD. Nashikata T. Asian J. Org. Chem. 2020; 9: 480 ; and references cited therein
- 14b Jagtap S. Catalysts 2017; 7: 267 ; and references cited therein
- 14c McCartney D, Guiry PJ. Chem. Soc. Rev. 2011; 40: 5122 ; and references cited therein
- 14d Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009 ; and references cited therein
- 14e Heck RF, Nolley JP. Jr. J. Org. Chem. 1972; 37: 2320
- 15a Buszek KR, Brown N. Org. Lett. 2007; 9: 707
- 15b Molander GA, Brown AR. J. Org. Chem. 2006; 71: 9681
- 16 For similar observations, see: Phumjan T, Songthammawat P, Jongcharoenkamol J, Batsomboon P, Ruchirawat S, Ploypradith P. J. Org. Chem. 2021; 86: 13322
- 17a Cabrera-Afonso MJ, Carreño MC, Urbano A. Adv. Synth. Catal. 2019; 361: 4468
- 17b Chardin C, Rouden J, Livi S, Baudoux J. Green Chem. 2017; 19: 5054
- 17c Mikula H, Svatunek D, Lumpi D, Glöcklhofer F, Hametner C, Fröhlich J. Org. Process Res. Dev. 2013; 17: 313
- 17d Bach RD, Dmitrenko O, Adam W, Schambony S. J. Am. Chem. Soc. 2003; 125: 924
- 17e Adam W, Saha-Möller CR, Zhao C.-G. Dioxirane Epoxidation of Alkenes. In Organic Reactions, Vol. 61, Chap. 2. Overman LE. John Wiley & Sons, Inc; New York: 2002. and references cited therein
- 17f Murray RW. Chem. Rev. 1989; 5: 1187 ; and references cited therein
- 18 Oxidation of the hydroxy group of the isochromanol 25g gave the corresponding ketone while retaining the same diastereomeric ratio, indicating that 25g was obtained as a mixture of diastereomers at the bisbenzylic position. Therefore, epoxidation followed by ring opening/cyclization proceeded with exclusive diastereoselectivity.
- 19a Gilmore K, Mohamed RK, Alabugin IV. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016; 6: 487
- 19b Nicolaou KC, Prasad CV. C, Somers PK, Hwang CK. J. Am. Chem. Soc. 1989; 111: 5330
- 20a Qin Y, Lv J, Lou S, Cheng J.-P. Org. Lett. 2014; 16: 5032
- 20b Dethe DH, Murhade GM, Ghogh S. J. Org. Chem. 2015; 80: 8367
- 21 Other Lewis/Brønsted acids (InCl3, In(OTf)3, Sc(OTf)3, Bi(OTf)3, and TFA) in catalytic amount (10 mol%) only gave the indanone product arising from the Meinwald rearrangement. When (+)-CSA was used in other solvents (CH2Cl2, THF, CH3CN, and toluene), a mixture of the desired tricyclic product and the Meinwald indanone was obtained.
- 22 In these cases, either the epoxides were not observed at all or the corresponding epoxides may be observed in the NMR spectra of the crude mixtures but did not yield any tricyclic products upon treating the crude mixtures with CSA.
- 23a Zanardi MM, Sarotti AM. J. Org. Chem. 2021; 86: 8544
- 23b Zanardi MM, Suaŕez AG, Sarotti AM. J. Org. Chem. 2017; 82: 1873
- 24a Gordon HL, Freeman S, Hudlicky T. Synlett 2005; 2911
- 24b Fraile A, Parra A, Tortosa M, Alemán J. Tetrahedron 2014; 70: 9145 ; and references cited therein
- 24c Chang S.-J, McNally D, Shary-Tehrany S, Hickey MJ, Boyd RH. J. Am. Chem. Soc. 1970; 92: 3109
- 25a Gaussian 16, Revision C.01. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian, Inc; Wallingford CT: 2016
- 25b GaussView, Version 6. Dennington R, Keith TA, Millam JM. Semichem Inc; Shawnee Mission: 2016
- 26 Rablen PR, Bally T. J. Org. Chem. 2011; 76: 4818
- 27 CYLview20. Legault CY. Université de Sherbrooke; Canada: 2020. http://www.cylview.org
For synthesis, see:
For pharmacological effects, see:
For a similar strategy, see:
For other strategies, see:
For Heck reactions, see:
For Suzuki vinylation reactions, see:
The 5/5 ring fusion of the indane-lactone (the bicyclo[3.3.0]) framework would require the stereochemistry at the ring junction to be cis. For additional examples, see: