Subscribe to RSS
DOI: 10.1055/s-0042-1751465
Efficient Synthesis of Aminoquinolinium and Aminoquinazolinium Salt Series: Amination or N-Alkylation First?
The Agence Nationale de la Recherche is gratefully acknowledged for the JCJC ANR grant “iPOD” (17-CE07-000101).
Abstract
The pharmacokinetic properties and, in particular, the poor solubilities of lead drug compounds are often a major impediment to their future clinical development. One common and effective solution is generally to use salt forms. Efficient strategies for the synthesis of quinolinium and quinazolinium salt series with promising therapeutic activities are thus of major interest. This study compares different synthetic routes for the rapid preparation of monomeric and dimeric aminoquinolinium and aminoquinazolinium salts. The advantages and limitations of the different processes, especially the importance of step order, are discussed.
Key words
aminoquinolinium salts - aminoquinazolinium salts - N,N′-bridging alkylation - amination - nucleophilic aromatic substitutionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1751465.
- Supporting Information
Publication History
Received: 17 March 2023
Accepted after revision: 15 May 2023
Article published online:
27 June 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Ajani OO, Iyaye KT, Ademosun OT. RSC Adv. 2022; 12: 18594
- 2 Ajani OO, Aderohunmu D, Umeokoro EN, Olomieja AO. Bangladesh J. Pharmacol. 2016; 11: 716;
- 3 Matada BS, Pattanashettar R, Yernale NG. Bioorg. Med. Chem. 2021; 32: 115973
- 4 Alagarsamy V, Chitra K, Saravanan G, Raja Solomon V, Sulthana MT, Narendhar B. Eur. J. Med. Chem. 2018; 151: 628
- 5 Marella A, Prakash Tanwar O, Saha R, Rahmat Ali M, Srivastava S, Akhter M, Shaquiquzzaman M, Mumtaz Alam M. Saudi Pharm. J. 2013; 21: 1
- 6 Bansal R, Malhotra A. Eur. J. Med. Chem. 2021; 211: 113016
- 7a Musiol R. Expert Opin. Drug. Discovery 2017; 12: 583
- 7b Ravez S, Castillo-Aguilera O, Depreux P, Goossens L. Expert Opin. Ther. Pat. 2015; 25: 789
- 8a Baird JK. Clin. Microbiol. Rev. 2019; 32: e00011-19
- 8b Dhameliya TJ, Kathuria D, Patel TM, Dave BP, Chaudhari AZ, Vekariya DB. Curr. Top. Med. Chem. (Sharjah, United Arab Emirates) 2023; 23: 753
- 9 Yadav P, Shah K. Bioorg. Chem. 2021; 109: 104639
- 10 Serajuddin AT. M. Adv. Drug Delivery Rev. 2007; 59: 603
- 11 Gupta D, Bhatia D, Dave V, Sutariya V, Gupta SV. Molecules 2018; 23: 1719
- 12 Mustiere R, Lagardere P, Hutter S, Deraeve C, Schwalen F, Amrane D, Masurier N, Azas N, Lisowski V, Verhaeghe P, Mazier D, Vanelle P, Primas N. RSC Adv. 2022; 12: 20004
- 13 Amrane D, Primas N, Arnold C.-S, Hutter S, Louis B, Sanz-Serrano J, Azqueta A, Amanzougaghene N, Tajeri S, Mazier D, Verhaeghe P, Azas N, Botté C, Vanelle P. Eur. J. Med. Chem. 2021; 224: 113722
- 14 Amrane D, Arnold C.-S, Hutter S, Sanz-Serrano J, Collia M, Azqueta A, Paloque L, Cohen A, Amanzougaghene N, Tajeri S, Franetich JF, Mazier D, Benoit-Vical F, Verhaeghe P, Azas N, Vanelle P, Botté C, Primas N. Pharmaceuticals 2021; 14: 724
- 15 Casanova, M. C.; Zhao, Y.; Hutter, S.; Fil, M.; Médebielle, M.; Vanelle, P.; Azas, N.; Broggi, J. Redox-active N,N’-bridged heterocyclic bis-iminium salts with promising antiplasmodial activities, submitted.
- 16 For a similar pyridinium dealkylation, see: Ruiz A, Rocca P, Marsais F, Godard A, Quéguiner G. Tetrahedron Lett. 1997; 38: 6205
- 17 1,1′-Propane-1,3-diylbis[4-(diethylamino)-6,7-dimethoxyquinolinium] Diiodide (21); Method 1, Typical ProcedureA solution of N,N-diethyl-6,7-dimethoxyquinolin-4-amine (4; 50 mg, 0.19 mmol, 1 equiv) and 1,3-diiodopropane (10 μL, 0.086 mmol, 0.45 equiv) in anhyd MeCN (5 mL) was stirred for 24 h at 110 °C in a sealed microwave vial. Et2O (25 mL) was then added to the cooled suspension to induce precipitation of a solid that was collected by filtration, washed with Et2O (3 × 10 mL), and dried under a vacuum. The solid was crystallized from EtOH to give a pale-yellow solid; yield: 61 mg (87%).1H NMR (400 MHz, DMSO-d 6): δ = 1.38 (t, J = 6.9 Hz, 12 H, 4 CH3), 2.44–2.46 (m, 2 H, CH2), 3.72 (q, J = 6.9 Hz, 8 H, 4 NCH2), 3.96 (s, 6 H, 2 OCH3), 3.98 (s, 6 H, 2 OCH3), 4.79 (br t, J = 7.2 Hz, 4 H, 2 N+CH2), 7.02 (d, J = 7.5 Hz, 2 H, 2 H3), 7.27 (s, 2 H, 2 H8), 7.31 (s, 2 H, 2 H5), 8.45 (d, J = 7.5 Hz, 2 H, 2 H2).13C APT NMR (100 MHz, DMSO-d 6): δ = 12.4 (CH3), 27.9 (CH2), 46.8 (NCH2), 51.2 (N+CH2), 55.9 (OCH3), 56.7 (OCH3), 98.7 (CH3), 103.7 (CH5), 106.0 (CH8), 113.7 (C4a), 135.8 (C8a), 142.8 (CH2), 147.4 (C6), 154.3 (C7), 157.4 (C4). HRMS (ESI): m/z [M2+] calcd for C33H46N4O4: 281.1754; found: 281.1752.1,1′-Propane-1,3-diylbis[4-(diethylamino)-6,7-dimethoxyquinolinium] Dihexafluorophosphate (21-PF6)A solution of the diiodide 21 (40 mg, 0.048 mmol, 1 equiv) and KPF6 (0.135 g, 0.73 mmol, 15 equiv) in 1:1 MeOH–H2O (5 mL) was stirred for 2 h at 60 °C under reflux. H2O (20 mL) was added to the cooled suspension to precipitate a solid that was collected by filtration, washed with H2O (3 × 10 mL), and dried under vacuum to give a pale-yellow solid; yield: 24 mg (59%); mp 240–245 °C (dec.).1H NMR (400 MHz, DMSO-d 6): δ = 1.37 (t, J = 6.9 Hz, 12 H, 4 CH3), 2.41–2.49 (m, 2 H, CH2), 3.72 (q, J = 6.9 Hz, 8 H, 4 NCH2), 3.95 (s, 6 H, 2 OCH3), 3.96 (s, 6 H, 2 OCH3), 4.74 (br t, J = 7.2 Hz, 4 H, 2 N+CH2), 7.01 (d, J = 7.6 Hz, 2 H, 2 H3), 7.25 (s, 2 H, 2 H8), 7.31 (s, 2 H, 2 H5), 8.41 (d, J = 7.6 Hz, 2 H, 2 H2). 13C APT NMR (100 MHz, DMSO-d 6): δ = 12.4 (CH3), 27.8 (CH2), 46.8 (NCH2), 51.2 (N+CH2), 55.9 (OCH3), 56.6 (OCH3), 98.7 (CH3), 103.7 (CH5), 106.0 (CH8), 113.7 (C4a), 135.8 (C8a), 142.9 (CH2), 147.4 (C6), 154.3 (C7), 157.5 (C4). 19F NMR (376 MHz, DMSO-d 6): δ = –70 (d, J = 711 Hz). 31P NMR (162 MHz, DMSO-d 6): δ = –144 (sept, J = 711 Hz). HRMS (ESI): m/z [M2+] calcd for C33H46N4O4: 281.1754; found: 281.1754; m/z [M2+ + PF6 –]+ calcd for C33H46F6N4O4P: 707.3153; found: 707.3155.