Synthesis 2024; 56(12): 1896-1904
DOI: 10.1055/s-0042-1751561
paper

Synthesis, Photophysical, and AIE Properties of 2H-Imidazole-Derived Push-Pull Fluorophores

Igor A. Lavrinchenko
a   Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russian Federation
,
Egor A. Nikiforov
a   Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russian Federation
,
a   Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russian Federation
,
a   Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russian Federation
b   Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620990 Ekaterinburg, Russian Federation
,
Anton N. Tsmokalyuk
a   Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russian Federation
,
Thomas V. Nechaev
a   Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russian Federation
,
Valery N. Charushin
a   Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russian Federation
b   Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620990 Ekaterinburg, Russian Federation
,
a   Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russian Federation
b   Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620990 Ekaterinburg, Russian Federation
› Author Affiliations
The research was financially supported by the Russian Science Foundation (RSF), project No. 20-73-10077, https://www.rscf.ru/en/project/20-73-10077/ (chemical synthesis and photophysical studies) and by the Ministry of Science and Higher Education of the Russian Federation within the Priority-2030 Program of Ural Federal University (conceptualization).


Abstract

A four-stage method for the synthesis of 2H-imidazole-derived push-pull fluorophores was developed. The synthesized compounds are characterized by absorption in the range of 250–400 nm, emission of up to 617 nm, and quantum yields of up to 99%. Compounds bearing a tetraphenylethylene fragment demonstrated the AIE effect in a solution with a water fraction fw >90% and significant increase in the emission intensity of up to 20 times and quantum yields of up to 22%. The ICT states for these fluorophores were confirmed by calculating the excited state dipole moments (>23D). The reported synthetic method enables fine-tuning of the fluorescent properties for the developed photoactive molecular systems by varying donor fragments. The obtained compounds could be of particular interest in the design of photoactive organic and hybrid materials.

Supporting Information



Publication History

Received: 12 December 2023

Accepted after revision: 02 February 2024

Article published online:
22 February 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany