Subscribe to RSS
DOI: 10.1055/s-0042-1752658
Synthesis of Clausena Alkaloids Using Unique Ring Expansion of Dihydroisoquinolines and Their Cholinesterase Inhibitory Activity
Funding: Thailand Science Research and Innovation (TSRI, Grant Number FRB660044/0240), Chulabhorn Royal Academy (Project Code 180874) and Chulabhorn Research Institute (Grant Numbers 36824/4274394 and 36827/4274407).
Abstract
A facile and direct synthetic entry to the carbon skeleton of Clausena alkaloids, the benzo[d]azocin-4-one, is reported featuring the ring expansion of 1-phenyldihydroisoquinoline derivatives initially triggered by oxazolone under environmentally benign conditions in a one-pot procedure. Functionalization of the eight-membered lactam framework provided a set of Clausena alkaloid derivatives. Some derivatives show a promising inhibition toward acetylcholinesterase and a better selectivity index than the previously used Alzheimer’s disease (AD) drug, tacrine, and the currently used AD drug, galantamine.
Key words
Clausena alkaloids - ζ-clausenamides - balasubramides - benzo[d]azocinones - eight-membered lactams - ring expansionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0042-1752658.
- Supporting Information
Publication History
Received: 31 January 2023
Accepted after revision: 24 February 2023
Article published online:
12 April 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Arbab IA, Abdul AB, Aspollah M, Abdullah R, Abdelwahab SI, Mohan S, Abdelmageed AH. A. J. Med. Plants Res. 2011; 5: 7177
- 1b Huang L, Feng Z.-L, Wang Y.-T, Lin L.-G. Chin. J. Nat. Med. 2017; 15: 881
- 2 Liu GT, Li W.-X, Chen Y.-Y, Wei H.-L. Drug Dev. Res. 1996; 39: 174
- 3a Cui C.-B, Yan S.-Y, Cai B, Yao X.-S. J. Asian Nat. Prod. Res. 2002; 4: 233
- 3b Ito C, Ohta H, Tan HT. W, Furukawa H. Chem. Pharm. Bull. 1996; 44: 2231
- 3c Kumar V, Reisch J, Wickramasinghe A. Aust. J. Chem. 2008; 42: 1375
- 3d Sripisut T, Laphookhieo S. J. Asian Nat. Prod. Res. 2010; 12: 614
- 3e Sunthitikawinsakul A, Kongkathip N, Kongkhathip B, Phonnakhu S, Daly JW, Spande TF, Nimit Y, Rochanaruangrai S. Planta Med. 2003; 69: 155
- 3f Wu T.-S, Huang S.-C, Lai J.-S, Teng C.-M, Ko F.-N, Kuoh C.-S. Phytochemistry 1993; 32: 449
- 3g Xin Z.-Q, Lu J.-J, Ke C.-Q, Hu C.-X, Lin L.-P, Ye Y. Chem. Pharm. Bull. 2008; 56: 827
- 3h Chaichantipyuth C, Pummangura S, Naowsaran K, Thanyavuthi D. J. Nat. Prod. 1988; 51: 1285
- 3i Ito C, Katsuno S, Itoigawa M, Ruangrungsi N, Mukainaka T, Okuda M, Kitagawa Y, Tokuda H, Nishino H, Furukawa H. J. Nat. Prod. 2000; 63: 125
- 3j Maneerat W, Ritthiwigrom T, Cheenpracha S, Promgool T, Yosathera K, Deachathai S, Phakhodee W, Laphookhieo S. J. Nat. Prod. 2012; 75: 741
- 3k Liu H, Li C.-J, Yang J.-Z, Ning N, Si Y.-K, Li L, Chen N.-H, Zhao Q, Zhang D.-M. J. Nat. Prod. 2012; 75: 677
- 3l Shen D.-Y, Chan Y.-Y, Hwang T.-L, Juang S.-H, Huang S.-C, Kuo P.-C, Thang TD, Lee E.-J, Damu AG, Wu T.-S. J. Nat. Prod. 2014; 77: 1215
- 3m Liu Y.-P, Guo J.-M, Liu Y.-Y, Hu S, Yan G, Qiang L, Fu Y.-H. J. Agric. Food Chem. 2019; 67: 5764
- 3n Liu Y.-P, Guo J.-M, Xie Z, Suo X.-Y, Liu Z.-Y, Qiao Z.-H, Guan R.-Q, Bian Y, Qiang L, Fu Y.-H. J. Org. Chem. 2021; 86: 17722
- 4 Wu T.-S, Huang S.-C, Wu P.-L. Tetrahedron Lett. 1996; 37: 7819
- 5 Ngadjui BT, Ayafor JF, Sondengam BL, Connolly JD. Phytochemistry 1989; 28: 1517
- 6 Lin J.-H. Phytochemistry 1989; 28: 621
- 7a Yang M.-H, Chen Y.-Y, Huang L. Chin. Chem. Lett. 1991; 2: 291
- 7b Yang M.-H, Chen Y.-Y, Huang L. Phytochemistry 1988; 27: 445
- 8 Sun X, Li C, Ma J, Zang Y, Huang J, Chen N, Wang X, Zhang D. Fitoterapia 2021; 154: 104999
- 9 Riemer B, Hofer O, Greger H. Phytochemistry 1997; 45: 337
- 10a Yang L, Deng G, Wang D.-X, Huang Z.-T, Zhu J.-P, Wang M.-X. Org. Lett. 2007; 9: 1387
- 10b Ma N, Wu K, Huang L. Eur. J. Med. Chem. 2008; 43: 893
- 10c Yang L, Wang D.-X, Zheng Q.-Y, Pan J, Huang Z.-T, Wang M.-X. Org. Biomol. Chem. 2009; 7: 2628
- 10d Johansen MB, Leduc AB, Kerr MA. Synlett 2007; 2593
- 10e Li J, Li J, Xu Y, Wang Y, Zhang L, Ding L, Xuan Y, Pang T, Lin H. Nat. Prod. Res. 2016; 30: 800
- 10f Juárez-Calderón M, Aparicio DM, Gnecco D, Juárez JR, Orea L, Mendoza A, Sartillo-Piscil F, del Olmo E, Terán JL. Tetrahedron Lett. 2013; 54: 2729
- 11a Worayuthakarn R, Thasana N, Ruchirawat S. Org. Lett. 2006; 8: 5845
- 11b Boonya-udtayan S, Eno M, Ruchirawat S, Mahidol C, Thasana N. Tetrahedron 2012; 68: 10293
- 12 Movassaghi M, Hill MD. Org. Lett. 2008; 10: 3485
- 13 Tabata H, Suzuki H, Akiba K, Takahashi H, Natsugari H. J. Org. Chem. 2010; 75: 5984
- 14 CCDC 2209415 (16c) and CCDC 2209511 (12) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. Also see Supporting Information.
- 15a Szabó T, Papp M, Németh DR, Dancsó A, Volk B, Milen M. J. Org. Chem. 2021; 86: 128
- 15b Haddach AA, Kelleman A, Deaton-Rewolinski MV. Tetrahedron Lett. 2002; 43: 399
- 16 Sawettanai N, Leelayuwapan H, Karoonuthaisiri N, Ruchirawat S, Boonyarattanakalin S. J. Org. Chem. 2019; 84: 7606
- 17 Ellman GL, Courtney KD, Andres V, Featherstone RM. Biochem. Pharmacol. 1961; 7: 88