Subscribe to RSS
DOI: 10.1055/s-0042-1755535
Current Concepts in Double-Level Osteotomies around the Knee
Article in several languages: español | English- Abstract
- Introduction
- Biomechanical Principles in the Planning for Coronal Deformity
- Biomechanical Justification of the Double-Level Concept
- Clinical Assessment
- Imaging Assessment
- Indications
- Surgical technique
- Complications
- Postoperative Care
- Outcomes
- Our Experience
- Conclusions
- Referencias
Abstract
With single-level osteotomy, correction of the limb axis in patients with combined femoral and tibial deformities can be achieved. This correction, however, will generate a pathological alteration in the joint line oblicuity, leading to ligament elongation, instability, joint degeneration and, ultimately, it will compromise the longevity and functional results of the correction. By analyzing the most recent literature, we can conclude that there is a significant number of patients who require a combined procedure to achieve an optimal biomechanical goal. The purpose of a double-level osteotomy around the knee is to restore normal anatomy, unload the affected compartment, normalize the mechanical angles and the orientation of the joint line. Physiological axes can be reestablished by means of a thorough preoperative analysis, observing the biomechanical principles and stable fixation with locked plates. It is a demanding procedure with increasing indications, which has progressively been established in clinical and biomechanical studies as a justified treatment alternative for the management of severe deformities around the knee.
#
Keywords
Mikulicz line - joint line obliquity - double-level osteotomy - distal femoral osteotomy - high tibial osteotomy - osteotomy around the kneeIntroduction
Alignment is the most critical hierarchical factor in the evaluation of ligamentous, meniscal, and cartilage injuries for joint preservation surgery.[1] Unicompartmental overload results in progressive pain and several grades of chondral damage; it is an independent risk factor for the development and progression of osteoarthritis.[2] An osteotomy around the knee may correct the joint biomechanics and have powerful effects over the local biology.[3] [4] [5] [6] [7] [8] [9] [10] This explains why an isolated procedure may be sufficient to relieve the symptoms from chondral injuries, meniscal insufficiency, and chronic ligamentous injuries. The progressive dissemination of the mechanobiological concept[1] [11] (which makes the biological outcomes of a joint intervention contingent on the adequate correction of biomechanical factors) and the technological improvements in fixation devices and techniques led to a boom in its indication. A double-level osteotomy (DLO) has increasing relevance in such a context because of its clinical and biomechanical justification. A DLO is a one-time osteotomy to correct deformities in the distal femur and proximal tibia. Its application is based on the need to preserve a physiological joint line obliquity (JLO) without generating new deformities. The present study provides a detailed description of the highlights of the procedure in the tibiofemoral joint and the coronal plane.
#
Biomechanical Principles in the Planning for Coronal Deformity
The systematic analysis of the deformity according to Paley's criteria[12] [13] enables the identification of the affected bone segment ([Table 1]).
Angles and axes |
Definitions |
Normal values |
Meaning of the altered values |
---|---|---|---|
Mechanical tibiofemoral angle |
Angle between the femoral mechanical axis (a line drawn from the center of the femoral head to the center of the femoral groove) and the tibial mechanical axis (a line drawn from the center of the tibial spines to the center of the ankle) |
0° ± 3° |
Coronal deformity in varum or valgum |
Weight-bearing axis or Mikulicz line |
Line drawn from the center of the femoral head to the center of the ankle |
It must intersect the tibia on a surface between both tibial spines |
Varum: the line is > 15 mm medial to the center of the knee; valgum: The line is > 10 mm lateral to the center of the knee |
Mechanical lateral distal femoral angle |
Lateral angle formed by a line tangent to the femoral condyles and the femoral mechanical axis |
85°–90° (average: 87°) |
Distal femoral metaphyseal deformity |
Mechanical medial proximal tibial angle |
Medial angle formed by a line tangent to the joint surface of the tibial plateaux and the tibial mechanical axis |
85°–90° (average: 87°) |
Proximal tibial metaphyseal deformity |
Joint line convergence angle |
Angle connecting lines tangent to femoral and tibial joint surfaces |
0° ± 2° |
Intra-articular deformity or chronic ligament injury |
An osteotomy study group[14] has recently proposed a simple formula to determine the value to subtract from the planned coronal axis correction and avoid an excess resulting from the variations in the joint line convergence angle (JLCA): [planned corrected angle] – [(JLCA – 2)/2]. On the other hand, if the preoperative JLCA is ≤ 6°, a conventional osteotomy can correct an intra-articular deformity to acceptable values (JLCA ≤ 5°).[15] If a satisfactory extra-articular correction of a combined (intra- and extra-articular) deformity is not feasible, we suggest evaluating the option of an intra-articular osteotomy as described by Chiba[16] [17] [18] [19] on a case-by-case basis. This is especially true in cases of osteoarthritis with a Kellgren-Lawrence (KL) classification ≤ 3 as a consequence of tibial pagoda deformities (in which there is an excessive change in the coronal inclination of the articular surface of the tibial plateau), such as in Blount disease, posttraumatic defects and vicious consolidations. However, we recommend unicompartmental prosthetic surgery for severe monocompartmental osteoarthritis (bone on bone contact). This procedure may be accompanied by an osteotomy to correct the axis in cases of residual metaphyseal misalignment,[20] because the overloads will ultimately affect the survival of the implant.[21]
There are several proposals to correct the Mikulicz line and normalize the mechanical tibiofemoral axis.[3] [22] [23] [24] Nonetheless, a consensual approach remains a controversial issue. In varus alignment, Feucht et al.[25] proposed a personalized approach to translate the Mikulicz line from 50% to 65% of the proximal tibial joint surface depending on the reason for axis correction (increasing osteoarthritis severity and treatment of chondral, meniscal or chronic ligamentous injuries) ([Figure 1]). Hohloch et al.[26] confirmed this proposal in a clinical setting, and concluded that patients with KL-1 and -2 osteoarthritis benefit from a correction of 55% of the tibial joint width, whereas KL-3 subjects require a 60% correction. No clinical cases could confirm the proposed 65% correction for KL 4,[25] in which an indication for osteotomy is more questionable. Bonnin and Chambat[27] described the tibial bone varus angle (TBVA), defining values > 5° as abnormal and implying a metaphyseal deformity. An osteotomy is curative (deformity correction and joint line obliquity normalization) in cases with abnormal TBVA alone, with a success rate > 90% at a 10-year follow-up.[27] [28] Since this value has reportedly low interobserver correlation,[29] [30] an abnormal TBVA must be equivalent to a mechanical medial proximal tibial angle (mMPTA)< 85°.
In contrast, the literature is scarce on the goal of a valgus alignment correction. According to expert recommendation,[31] the desired correction of the Mikulicz line is neutral in KL-1 and -2 osteoarthritides (traversing 50% of the tibial articular surface) and just medially to the medial tibial spine in the most severe cases of KL-3 and -4 (equivalent to 45% of the tibial articular surface) ([Figure 1]). The best evidence comes from Shivji et al.,[32] who clinically confirmed a survival rate of 89% at a 10-year follow-up after varus femoral osteotomy for KL-2 to -4 osteoarthritis. Their goal was to correct the Mikulicz line in 45% of the tibial joint surface and customize it to maintain a mechanical lateral distal femoral angle (mLDFA) ± 3° within the normal range.
#
Biomechanical Justification of the Double-Level Concept
The JLO is the angle between a line parallel to the ground and a line tangent to the proximal tibial articular surface. Its normal value has been calculated in clinical[33] [34] [35] [36] and biomechanical[37] [38] studies as 0° ± 4°. Its lateral tilt (valgum) generates a positive value, and a medial tilt (varum) results in a negative value. The distance between the centers of both hips is greater than the space between the centers of both knees and ankles. Therefore, the Mikulicz line runs slightly obliquely from proximal to distal and lateral to medial at approximately 3° from the midline, leading to a JLO with a 3° varus. During the stance phase of walking, the joint line is parallel to the ground, resulting in a physiological neutralization of the varus deformity and optimal load distribution.[13] Any frontal plane correction must consider this biomechanical pattern. The pathological inclination of the joint line generates shearing forces that increase the stress over collateral ligament structures and cause progressive joint cartilage damage.[37] Park et al.[39] developed a predictive model for postosteotomy joint line orientation, and concluded that the obliquity increases approximately 1° for every 2° increase in the correction angle. At the same time, it may be possible to predict the postoperative JLO as the sum of the preoperative JLO and the adduction angle of the affected lower extremity; this angle is formed by the native Mikulicz line and the one planned for the resolution of the case.[40] The adverse effects of an oblique joint line warrant a DLO.
Advances in knowledge improved the understanding of joint geometry and led to a paradigm shift when planning osteotomies. Eberbach et al.[41] analyzed 420 long leg standing radiographs of patients with valgus alignment (mechanical tibiofemoral angle [mTFA] ≥ 4°), and their study revealed that axis and JLO correction with a tolerance of 0° ± 4° required a tibial osteotomy in 55.2% of cases, a DLO in 25.2%, and a femoral osteotomy in 19.5% of the subjects. In contrast, Feucht et al.[42] assessed 303 long leg standing radiographs of patients with varus alignment (mTFA ≥ 3°), and the maximum corrected axis tolerance had a mMPTA ≤ 95° and mLDFA ≥ 85°. These values were based on previous studies,[37] [43] [44] [45] and were established to avoid JLO alterations and tibiofemoral subluxation.[37] [43] [44] [45] The article[42] revealed that, in simulated osteotomies, the correction site was tibial in 57%, double-level in 33%, and femoral alone in 8% of the cases. In addition, it confirmed that DLOs are significantly more frequent in knees with severe varus (mTFA ≥ 9°), which is consistent with previous studies.[33] [34] [46] [47]
#
Clinical Assessment
The history may reveal symptoms of chronic posterolateral or posteromedial corner instability. Patients with severe deformities usually present a latent history of malalignment and progressive ligamentous laxity generating a varus or valgus thrust[48] [49] ([Figure 2]).
Patient-specific variables (age, body mass index, workload, expectations, and motivations) are relevant prognostic indicators and influence selection. In addition, it is critical to know potential contraindications, such as smoking and the ability to adhere to a postoperative treatment.
The evaluation continues with the patient in recumbent position to document an acceptable joint range for the procedure (loss of extension < 15° and at least 90° of flexion) and analyze ligament stability. The examination must also consistently determine the presence of unicompartmental pain, which will be the main indication to proceed with the preoperative study in a DLO.
#
Imaging Assessment
Comparative anteroposterior (AP) knee radiographs with weight-bearing assess the symmetry of the deformity. The Rosenberg projection (a posteroanterior radiograph with load and the knee flexed at 45°) is essential to determine the severity of joint impingement. In addition, it has a powerful predictive value in identifying the early stages of degenerative disease, influencing postoperative clinical outcomes.[50] Lateral and axial radiographs of the patella allow the evaluation of the patellofemoral joint in order to modulate the patellar height by means of the type of osteotomy. A long leg standing radiograph is a crucial imaging study because it enables a systematic analysis of the deformity. Magnetic resonance imaging (MRI) allows the evaluation of associated lesions and reveals areas of subchondral bone edema as a sign of overload, facilitating the surgical decision.[51]
Traditionally, a proper analysis requires long leg standing radiograph standardization (with the patellas centered on the femoral condyles regardless of the patient's natural posture, one-third overlap of the fibular head on the tibia, and pelvis leveling with enhancement in case of length discrepancies). The most relevant and comparable methods[53] for freehand preoperative planning of a femoral or tibial osteotomy have been reported by Miniaci et al.[52] and Dugdale et al.[22]
Today, special software does the preoperative planning for these injuries. They enable the modification of the desired correction parameters and simulate different osteotomy types on the screen. In addition, it is possible to test the effects of variations on biomechanical parameters before surgery with high precision.[54] [55] As such, we can understand the reorientation of the mechanical tibiofemoral axis and its correlation with a JLO change. The foot positioning must remain plantigrade after the osteotomy simulation, so the measurements adjust to the real weight-bearing scenario.[56]
#
Indications
As a preoperative functional requirement, the pain level must enable the patient to have an active lifestyle.[57] We recommend DLO for patients younger than 60 years of age because there is no significant correlation between JLO and an objective functional evaluation of the knee after osteotomy in older subjects.[58] Any axis alteration in which the Mikulicz line does not contact the knee is highly suggestive of a DLO since it indicates a severe deformity (mTFA ≥ 9°). Optimal outcomes require that unicompartmental wear is lower than KL 3.[34] [46] [47] [59] Subjects must present altered mLDFA and mMPTA or a JLO higher than 4° at the simulated one-level osteotomy.[33] This usually happens in cases with a planned opening or closing wedge ≥ 15 mm[37] [57] ([Figure 3]). Recently, Sohn et al.[60] postulated a predictive algorithm for DLO based solely on preoperative parameters to avoid the need for software simulation. In this algorithm, a JLO ≥ 3° and a JLCA ≥ 5° are a highly suggestive recommendation for a double-level correction.
Although there are different DLO combinations, we believe the best options for the correction of varus deformity are the lateral closing wedge distal femoral osteotomy and the medial open wedge high tibial osteotomy ([Figure 4]). For valgus deformity, the best option is a medial closing wedge osteotomy at a femoral and tibial level. If possible, the opening wedge graft must come from the closing wedge of the adjacent segment. A medial closing wedge high tibial osteotomy for valgus management requires special consideration. We recommend repairing or tightening the superficial medial collateral ligament if any intraoperative clinical evidence indicates pathological medial laxity. The lack of a specific intervention results in medial instability in 25% of the subjects when starting to walk with full weight-bearing; 70% of these patients remained with instability at a 4.5-year follow-up.[61]
#
Surgical technique
Advances in surgical techniques with biplanar osteotomies and the development of compressive locking plates as an essential design concept improved early stability. In addition, since rotational control and consolidation increased, these are currently seen as fundamental improvements in osteotomy to manage such injuries.[31] [62] Regardless of the patient selection criteria, the fundamental goal of a successful osteotomy around the knee is proper correction planning. Both undercorrection and overcorrection decrease procedural survival and result in poor functional outcomes. The systematic analysis of the deformity helps to recognize its magnitude, level, plane, and direction.
The patient is placed on a radiolucent operating table ([Figure 5]). The use of a tourniquet should be avoided with meticulous hemostasis and the preoperative administration of tranexamic acid. The procedure can begin with arthroscopy to assess the tricompartmental cartilage and treat the intra-articular injury.
We recommend starting the DLO in the femur and performing a closing osteotomy at this level. This decision lowers the possibility of intraoperative correction after bone section. As such, if correction is required, an open wedge high tibial osteotomy enables a fine adjustment at that level. However, planning is based on a long leg standing radiograph of the patient and in particular conditions of ligamentous laxity (revealed by the JLCA). So, we agree with several authors[63] [64] [65] [66] [67] that adapting the planning during surgery can lead to errors only subject to objective assessment in a follow-up long leg standing radiograph performed under similar conditions. This is why we trust in adequate preoperative planning and software simulation regarding alignment and joint line during the procedure.
From a trigonometric point of view, the only required intraoperative analysis is the confirmation of the wedge size based on the length of the osteotomy, which is variable in each case depending on the bone dimensions of the patient ([Figure 6]). This analysis can occur after positioning the wires that determine the wedge ([Figures 7A] and [7B]). Next, we cross-reference this value on the trigonometric table of the studies by Hernigou[68] [69] to confirm the wedge size (in millimeters) based on our preoperative angular planning ([Table 2]). This cross-reference prevents the consideration of 1° as 1 mm, which would decrease the precision, a key factor to a successful outcome.
Correction angle |
4° |
5° |
6° |
7° |
8° |
9° |
10° |
11° |
12° |
13° |
14° |
15° |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Osteotomy length |
||||||||||||
50 mm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
10 |
11 |
12 |
13 |
55 mm |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
10 |
11 |
12 |
13 |
14 |
60 mm |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
14 |
15 |
16 |
65 mm |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
14 |
15 |
16 |
17 |
70 mm |
5 |
6 |
7 |
8 |
10 |
11 |
12 |
13 |
15 |
16 |
17 |
18 |
75 mm |
5 |
6 |
8 |
9 |
10 |
12 |
13 |
14 |
16 |
17 |
18 |
20 |
80 mm |
6 |
7 |
8 |
10 |
11 |
13 |
14 |
15 |
17 |
18 |
19 |
21 |
The preferred technique for a distal femur osteotomy is the biplanar closing wedge,[31] [70] which enables a wide angular correction, with more predictable consolidation[71] and increased rotation stability. In the sagittal plane, identify a consistent vascular group composed of a transverse artery and two accompanying veins, collectively known as the three sisters ([Figure 7A]). These vessels occur on the medial and lateral aspects of the distal femur. Their disruption does not cause a loss of vascular supply due to supplementary collateral branches.[72] At this level, perform two incomplete transverse sections in the shape of an isosceles triangle in the posterior 3/4 of the femur to obtain a closing wedge with endogenous stability[73] and directed towards the hinge, which must be immediately proximal to the upper edge of the femoral condyle, 5 mm to 10 mm from the opposite cortex[31] ([Figure 6C]). This prevents unstable hinge fractures because the origin of the gastrocnemius muscle provides coverage and the local bone density is good.[74] [75] Next, perform a third ascending section in the coronal plane of the anterior 1/4 of the femur, covering a distance of 2 cm to 3 cm at an approximate proximal angle of 95°, parallel to the posterior cortical bone of the femur and with at least 10 mm in thickness ([Figure 7B]). Biomechanical tests showed that a biplanar osteotomy is superior to the uniplanar section and distal femoral opening techniques.[76] [77] The potential of consolidation increases because the wedge is smaller.[71] In addition, these procedures have a lower risk of damaging the joint surface of the trochlea. Finally, close the osteotomy gradually with plastic deformation of the cortical bone containing the hinge. Upon completion of the closing, the cortices of both bone segments must be in exact apposition to prevent subsidence and unwanted axis deviations.[73] Begin osteotomy fixation in the distal segment with locking screws. Next, place a bicortical gold screw due to its compressive effect over the hinge in the proximal portion of the osteotomy. This screw must be in a divergent position to the trait and in the cortical combined hole to increase coaptation. In case of a hinge fracture, this screw increases the contact between bone surfaces by reducing the displacement. After completing the proximal osteotomy fixation with locking screws, replace the gold screw with an additional bicortical locking screw ([Figures 6D] and [7C]). Finally, depending on the stability achieved, place a reduction cannulated screw at the hinge level, perpendicular to it.
Since the early 2000s, the medial open wedge high tibial osteotomy (MOWHTO) has become more popular than its lateral closing counterpart due to the introduction of locking plate systems and benefits such as a lower risk of peroneal nerve injury, lower levels of soft-tissue aggression, and the possibility of correction modulation (fine tuning of the opening).[78] From a technical point of view, we recommend a biplanar section to improve rotational stability[62] and consolidation[79] compared with a uniplanar osteotomy. The ascending component of the osteotomy must form a 110° angle with the horizontal section; in addition, it must be located posterior to the tibial tubercle and have 10 mm to 15 mm in thickness ([Figure 8A]). The release of the superficial medial collateral ligament is mandatory to avoid a paradoxical increase in medial unicompartmental pressure.[80] This technique produces a proximal metaphyseal bone fragment with good size and excellent healing potential (the osteotomy is performed immediately above the pes anserinus insertion,[81] and it must go towards the hinge in a safety area extending from the proximal end [styloid process] to the circumferential line of the fibular head. This is known as “hit the hat”, and it provides stability due to the attachment of capsuloligamentary structures[82] and the 10-mm distance from the lateral cortex) ([Figure 8B]). If you want to maintain a native tibial slope, create a trapezoidal opening wedge (the anterior gap must be half of the posterior one due to the triangular shape of the tibia).[83] The plate must be as posterior as possible because the natural tendency is an anteromedial location, which increases the slope. Biomechanical studies[84] [85] support the use of a 2-mm Kirschner wire at the hinge level to prevent fracture and improve stability during the opening process. In most MOWHTOs, the tibial tubercle remains attached to the distal fragment, lowering the patella. This also occurs in DLOs.[86] Therefore, in patients requiring openings greater than 10° and presenting patella baja (Caton Deschamps index < 0.8), a modification in the biplanar technique is needed, and the osteotomy in the coronal plane must be distal.[87] [88] [89] [90] Descending retrotuberosity osteotomies require additional fixation with one or two 3.5-mm compressive screws in the AP direction to avoid a change in the proximal segment slope (before plate fixation) or tuberosity avulsion fractures due to the traction exerted by the patellar tendon over this segment. Osteotomy fixation follows the same principles as in the femur. Here, initially fix the proximal segment with locking screws and then place a gold screw. Complete the osteosynthesis using distal locking screws and replace the gold screw with a bicortical locking screw in the combined hole ([Figure 8C]). Finally, depending on the outcome, place a small-fragment cannulated screw at the hinge level (intersecting the section plane) to increase its stability.[91] There is good evidence[92] [93] that adding bone grafts or synthetic substitutes does not provide functional advantages or improve patient-reported outcomes. When using locking plates, we only recommend bone grafts in openings > 10 mm[92] or in special cases with combined risk factors for non-union or loss of correction, such as smoking and obesity.[94]
#
Complications
Hinge fractures are less frequent than in traditional one-level osteotomies due to the distribution of the angular correction between the femur and tibia. These injuries usually result from improper techniques or excessive segment correction (> 12 mm).[95] They can compromise the axial and rotational rigidity of the construct and increase micromotion at the osteotomy level, disturbing the correction of the axis and consolidation. These fractures can be classified according to Takeuchi et al.[97] depending on their direction:[96] [97] in line with the osteotomy (type 1), with metaphyseal extension (type 2), or with joint extension (type 3). Most cases are type-1 fractures, which do not require additional treatment. In type-2 and -3 lesions (especially those with > 2 mm coronal displacement),[98] we recommend protecting the hinge with a 3.5-mm locking plate.
The main constitutional risk factors affecting the consolidation of an osteotomy are smoking and obesity.[94] [99] The nonunion rate is of 3.8% in femoral osteotomies,[100] and it ranges from 2.5%[95] to 3.2%[101] in tibial procedures.
Vascular injuries are infrequent (0.7%)[102] but devastating for the functional outcome. Bisicchia et al.[103] mapped the vascular structures at risk at both levels using computed tomography (CT) scans and cadaveric dissection. They concluded that the popliteal artery is at moderate risk of vascular injury in the femur and tibia when its average distance from the posterior cortex is of 11.6 mm and 9.6 mm respectively. Direct the saw at an angle lower than 30° in the axial plane to keep the section away from the fibular head, reducing the risk of injury at the tibial level.[104] [105] Keeping the knee at 90° of flexion during osteotomy distances the artery from the posterior cortex.[104] The genicular arteries on the contralateral side are at risk of injury because it is impossible to view or protect them during the procedure, particularly in cases with hinge compromise. Klecker et al.[106] recommend an MRI scan of the anterior tibial artery because its aberrant trajectory is relatively common; instead of running behind the popliteus muscle, the artery is in close contact with the posterior cortical bone of the proximal tibia. This variant has a 2% prevalence, and it is a relative contraindication for the procedure. During an MOWHTO, Kley et al.[107] advocate the creation of a secondary viewing window located posterior to the medial collateral ligament to protect the posterior neurovascular structures.
Other complications[102] include superficial (1.6%) and deep (0.7%) wound infections, compartmental syndrome (0.7%), and deep vein thrombosis (0.3%).
Appropriate counseling is crucial; warn patients undergoing osteotomy that the need for plate removal after bone consolidation is frequent because of soft-tissue irritation (with rates > 50%), which affects the iliotibial band in the lateral distal femur, whereas the close contact with the subcutaneous cellular tissue accounts for the irritation at the medial and proximal tibia.[95]
#
Postoperative Care
Locking plates enable a safe and functional rehabilitation, including immediate mobilization and early partial weight-bearing of 15 kg to 20 kg (protected with 2 crutches) starting in the third week. In general, there is no need for mobility restriction and bracing. Pharmacological thromboprophylaxis is performed for 3 weeks. If the clinical and radiological findings are favorable, we allow full weight-bearing in the seventh week.[31] [108] Recently, Hai et al.[109] described an accelerated protocol for early loading (from the third postoperative day) using parallel bars and visual feedback. This protocol would enable full loads in 1 month provided that the hinges are intact and a CT scan rules out fractures. Consolidation often occurs 3 to 6 months after surgery, when sports activities can be resumed.
#
Outcomes
The most critical prognostic factors to define the successful outcome of a DLO include the adequate treatment of the bone deformity both in terms of location and correction accuracy, as well as the postoperative joint line orientation ([Figure 4]). Preserving the JLO within narrow margins (0° ± 4°) ensures an osteotomy survival of 96% at an average follow-up of 8 years.[33] Contemporary level-based studies estimate that the 5- and 10-year survival rates range from 87% to 99% and 66% to 84% for the proximal tibia and from 74% to 90% and 64% to 82% for the distal femur respectively.[110]
A recent study[111] has demonstrated the mechanobiological effect of a DLO. The rate of chondral repair was higher than 95% in the unloaded compartment (with no need for additional procedures) in an average follow-up period at the time of an arthroscopic second look of 17 ± 5 months. Moreover, the clinical evaluation scores improved significantly.[111]
From an activity point of view,[110] [112] [113] [114] 85% of the patients undergoing an osteotomy around the knee resume their sports activity, usually those of low impact. A similar percentage resume work, often performing activities with similar or lower joint demand. The most significant prognostic factor to resume sports is continuous participation in them within the year before surgery; for work, the most important is being the breadwinner. Therefore, one of the most relevant factors for good outcomes is the patient's motivation. Most subjects can perform physical activities and work six months after surgery. If the patient cannot work, consider a potential progressive functional deterioration; in this case, ensure an intervention as early as possible.[113] A specific recent study[115] about this topic in DLO confirmed most of the aforementioned assertions.
Patient expectations regarding osteotomies are high in terms of work capacity, pain relief, and restoration of joint function. The natural course of osteoarthritis and the potential need for conversion to a knee prosthesis are underestimated. Therefore, discuss realistic expectations with the patient to improve satisfaction.[116]
#
Our Experience
Our team's experience is based on the concepts described in the present review. It corresponds to the period from 2019 to 2022, when we performed 52 osteotomies due to coronal deformity (70% in varus). The average age of the patients was 48 years, and 75% of the subjects were male. We performed a DLO in 27% of the total varus cases and in 13% of the total valgus cases. Twelve cases had a mean follow-up period shorter than 2 years ([Figure 9]). Our short-term functional outcomes are promising and consistent with those published in the literature.[57]
#
Conclusions
A single-level osteotomy can correct the limb axis in patients with combined femoral and tibial deformities. However, it also causes a pathological alteration of the joint line, leading to ligamentous elongation, instability, and joint degeneration. Ultimately, these changes compromise survival and functional outcomes. The most recent literature states that a significant number of patients require a combined procedure to achieve an optimal biomechanical outcome.
A DLO around the knee restores the normal anatomy, unloads the affected compartment, normalizes the mechanical angles and the joint line orientation. Moreover, it restores the physiological axes through careful preoperative analysis, respecting biomechanical principles, and stable fixation with locking plates ([Figure 10]). It is a demanding procedure with evolving indications. It has been established as a justified treatment alternative in clinical and biomechanical studies to manage severe deformities around the knee.
#
#
-
Referencias
- 1 Arnold MP, Hirschmann MT, Verdonk PCM. See the whole picture: knee preserving therapy needs more than surface repair. Knee Surg Sports Traumatol Arthrosc 2012; 20 (02) 195-196
- 2 Tanamas S, Hanna FS, Cicuttini FM, Wluka AE, Berry P, Urquhart DM. Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review. Arthritis Rheum 2009; 61 (04) 459-467
- 3 Fujisawa Y, Masuhara K, Shiomi S. The effect of high tibial osteotomy on osteoarthritis of the knee. An arthroscopic study of 54 knee joints. Orthop Clin North Am 1979; 10 (03) 585-608 http://www.ncbi.nlm.nih.gov/pubmed/460834
- 4 Wakabayashi S, Akizuki S, Takizawa T, Yasukawa Y. A comparison of the healing potential of fibrillated cartilage versus eburnated bone in osteoarthritic knees after high tibial osteotomy: An arthroscopic study with 1-year follow-up. Arthroscopy 2002; 18 (03) 272-278
- 5 Koshino T, Wada S, Ara Y, Saito T. Regeneration of degenerated articular cartilage after high tibial valgus osteotomy for medial compartmental osteoarthritis of the knee. Knee 2003; 10 (03) 229-236
- 6 Kröner AH, Berger CE, Kluger R, Oberhauser G, Bock P, Engel A. Influence of high tibial osteotomy on bone marrow edema in the knee. Clin Orthop Relat Res 2007; 454 (454) 155-162
- 7 Jung WH, Takeuchi R, Chun CW. et al. Second-look arthroscopic assessment of cartilage regeneration after medial opening-wedge high tibial osteotomy. Arthroscopy 2014; 30 (01) 72-79
- 8 d'Entremont AG, McCormack RG, Agbanlog K. et al. Cartilage health in high tibial osteotomy using dGEMRIC: Relationships with joint kinematics. Knee 2015; 22 (03) 156-162
- 9 Kim Il KI, Seo MC, Song SJ, Bae DK, Kim DH, Lee SH. Change of Chondral Lesions and Predictive Factors After Medial Open-Wedge High Tibial Osteotomy With a Locked Plate System. Am J Sports Med 2017; 45 (07) 1615-1621
- 10 Lee OS, Ahn S, Ahn JH, Teo SH, Lee YS. Effectiveness of concurrent procedures during high tibial osteotomy for medial compartment osteoarthritis: a systematic review and meta-analysis. Arch Orthop Trauma Surg 2018; 138 (02) 227-236
- 11 van Heerwaarden RJ, Hirschmann MT. Knee joint preservation: a call for daily practice revival of realignment surgery and osteotomies around the knee. Knee Surg Sports Traumatol Arthrosc 2017; 25 (12) 3655-3656
- 12 Paley D, Pfeil J. [Principles of deformity correction around the knee]. Orthopade 2000; 29 (01) 18-38
- 13 Paley D, Herzenberg JE, Tetsworth K, McKie J, Bhave A. Deformity planning for frontal and sagittal plane corrective osteotomies. Orthop Clin North Am 1994; 25 (03) 425-465 http://www.ncbi.nlm.nih.gov/pubmed/8028886
- 14 Micicoi G, Khakha R, Kley K, Wilson A, Cerciello S, Ollivier M. Managing intra-articular deformity in high Tibial osteotomy: a narrative review. J Exp Orthop 2020; 7 (01) 65
- 15 Ji W, Luo C, Zhan Y, Xie X, He Q, Zhang B. A residual intra-articular varus after medial opening wedge high tibial osteotomy (HTO) for varus osteoarthritis of the knee. Arch Orthop Trauma Surg 2019; 139 (06) 743-750
- 16 Chiba K, Yonekura A, Miyamoto T, Osaki M, Chiba G. Tibial condylar valgus osteotomy (TCVO) for osteoarthritis of the knee: 5-year clinical and radiological results. Arch Orthop Trauma Surg 2017; 137 (03) 303-310
- 17 Higuchi T, Koseki H, Yonekura A. et al. Comparison of radiological features of high tibial osteotomy and tibial condylar valgus osteotomy. BMC Musculoskelet Disord 2019; 20 (01) 409
- 18 Kuwashima U, Yonekura A, Itoh M, Itou J, Okazaki K. Tibial condylar valgus osteotomy - indications and technique. J Exp Orthop 2020; 7 (01) 30
- 19 Saito H, Yonekura A, Saito K. et al. A new double level osteotomy procedure to restore a joint line and joint angles in severe varus osteoarthritis. - Double level osteotomy associated with tibial condylar valgus osteotomy (DLOTO). Asia Pac J Sports Med Arthrosc Rehabil Technol 2020; 24: 9-13
- 20 Brinkman J-M, Rutten B, van Heerwaarden R. Total Knee Arthroplasty in Combination with Osteotomies around the Knee. J Knee Surg 2017; 30 (08) 774-783
- 21 Lobenhoffer P. The Rationale of Osteotomy around the Knee. J Knee Surg 2017; 30 (05) 386-392
- 22 Dugdale TW, Noyes FR, Styer D. Preoperative planning for high tibial osteotomy. The effect of lateral tibiofemoral separation and tibiofemoral length. Clin Orthop Relat Res 1992; (274) 248-264 http://www.ncbi.nlm.nih.gov/pubmed/1729010
- 23 Marti CB, Gautier E, Wachtl SW, Jakob RP. Accuracy of frontal and sagittal plane correction in open-wedge high tibial osteotomy. Arthroscopy 2004; 20 (04) 366-372
- 24 Müller M, Strecker W. Arthroscopy prior to osteotomy around the knee?. Arch Orthop Trauma Surg 2008; 128 (11) 1217-1221
- 25 Feucht MJ, Minzlaff P, Saier T. et al. Degree of axis correction in valgus high tibial osteotomy: proposal of an individualised approach. Int Orthop 2014; 38 (11) 2273-2280
- 26 Hohloch L, Kim S, Mehl J. et al. Customized post-operative alignment improves clinical outcome following medial open-wedge osteotomy. Knee Surg Sports Traumatol Arthrosc 2018; 26 (09) 2766-2773
- 27 Bonnin M, Chambat P. [Current status of valgus angle, tibial head closing wedge osteotomy in media gonarthrosis]. Orthopade 2004; 33 (02) 135-142
- 28 Jenny JY, Tavan A, Jenny G, Kehr P. [Long-term survival rate of tibial osteotomies for valgus gonarthrosis]. Rev Chir Orthop Repar Appar Mot 1998; 84 (04) 350-357
- 29 Jenny J-Y, Boéri C, Ballonzoli L, Meyer N. Difficultés et reproductibilité de la mesure radiographique de l'axe épiphysaire proximal du tibia selon la technique de Lévigne. Rev Chir Orthop Repar Appar Mot 2005; 91 (07) 658-663
- 30 van Raaij TM, Takacs I, Reijman M, Verhaar JAN. Varus inclination of the proximal tibia or the distal femur does not influence high tibial osteotomy outcome. Knee Surg Sports Traumatol Arthrosc 2009; 17 (04) 390-395
- 31 van Heerwaarden R, Brinkman JM, Pronk Y. Correction of Femoral Valgus Deformity. J Knee Surg 2017; 30 (08) 746-755
- 32 Shivji FS, Foster A, Risebury MJ, Wilson AJ, Yasen SK. Ten-year survival rate of 89% after distal femoral osteotomy surgery for lateral compartment osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 2021; 29 (02) 594-599
- 33 Babis GC, An K-N, Chao EYS, Rand JA, Sim FH. Double level osteotomy of the knee: a method to retain joint-line obliquity. Clinical results. J Bone Joint Surg Am 2002; 84 (08) 1380-1388
- 34 Saragaglia D, Mercier N, Colle PE. Computer-assisted osteotomies for genu varum deformity: which osteotomy for which varus?. Int Orthop 2010; 34 (02) 185-190
- 35 Oh KJ, Ko YB, Bae JH, Yoon ST, Kim JG. Analysis of Knee Joint Line Obliquity after High Tibial Osteotomy. J Knee Surg 2016; 29 (08) 649-657
- 36 Song JH, Bin Il SI, Kim JM, Lee BS. What Is An Acceptable Limit of Joint-Line Obliquity After Medial Open Wedge High Tibial Osteotomy? Analysis Based on Midterm Results. Am J Sports Med 2020; 48 (12) 3028-3035
- 37 Nakayama H, Schröter S, Yamamoto C. et al. Large correction in opening wedge high tibial osteotomy with resultant joint-line obliquity induces excessive shear stress on the articular cartilage. Knee Surg Sports Traumatol Arthrosc 2018; 26 (06) 1873-1878
- 38 Wang D, Willinger L, Athwal KK, Williams A, Amis AA. Knee Joint Line Obliquity Causes Tibiofemoral Subluxation That Alters Contact Areas and Meniscal Loading. Am J Sports Med 2021; 49 (09) 2351-2360
- 39 Park JY, Chang CB, Kang DW, Oh S, Kang SB, Lee MC. Development and validation of a prediction model for knee joint line orientation after high tibial osteotomy. BMC Musculoskelet Disord 2019; 20 (01) 434
- 40 Park J-G, Bin S-I, Kim J-M, Lee B-S. Using the Lower Limb Adduction Angle to Predict Postoperative Knee Joint-Line Obliquity After Open-Wedge High Tibial Osteotomy. Orthop J Sports Med 2021; 9 (05) :23259671211003991
- 41 Eberbach H, Mehl J, Feucht MJ, Bode G, Südkamp NP, Niemeyer P. Geometry of the Valgus Knee: Contradicting the Dogma of a Femoral-Based Deformity. Am J Sports Med 2017; 45 (04) 909-914
- 42 Feucht MJ, Winkler PW, Mehl J. et al. Isolated high tibial osteotomy is appropriate in less than two-thirds of varus knees if excessive overcorrection of the medial proximal tibial angle should be avoided. Knee Surg Sports Traumatol Arthrosc 2021; 29 (10) 3299-3309
- 43 Akamatsu Y, Kumagai K, Kobayashi H, Tsuji M, Saito T. Effect of Increased Coronal Inclination of the Tibial Plateau After Opening-Wedge High Tibial Osteotomy. Arthroscopy 2018; 34 (07) 2158-2169.e2
- 44 Schuster P, Geßlein M, Schlumberger M. et al. Ten-Year Results of Medial Open-Wedge High Tibial Osteotomy and Chondral Resurfacing in Severe Medial Osteoarthritis and Varus Malalignment. Am J Sports Med 2018; 46 (06) 1362-1370
- 45 Ogawa H, Matsumoto K, Akiyama H. Coronal tibiofemoral subluxation is correlated to correction angle in medial opening wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2018; 26 (11) 3482-3490
- 46 Saragaglia D, Blaysat M, Mercier N, Grimaldi M. Results of forty two computer-assisted double level osteotomies for severe genu varum deformity. Int Orthop 2012; 36 (05) 999-1003
- 47 Saragaglia D, Chedal-Bornu B, Rouchy RC, Rubens-Duval B, Mader R, Pailhé R. Role of computer-assisted surgery in osteotomies around the knee. Knee Surg Sports Traumatol Arthrosc 2016; 24 (11) 3387-3395
- 48 Roessler PP, Getgood A. The Role of Osteotomy in Chronic Valgus Instability and Hyperextension Valgus Thrust (Medial Closing Wedge Distal Femoral Varus Osteotomy and Lateral Opening Wedge High Tibial Osteotomy). Clin Sports Med 2019; 38 (03) 435-449
- 49 Díaz Allende P. Principios Biomecánicos en Inestabilidad Crónica Posterolateral de Rodilla. Rev Chil Ortop y Traumatol 2017; 58 (02) 041-047
- 50 Nha KW, Oh SM, Ha YW, Patel MK, Seo JH, Lee BH. Radiological grading of osteoarthritis on Rosenberg view has a significant correlation with clinical outcomes after medial open-wedge high-tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2019; 27 (06) 2021-2029
- 51 Felson DT, McLaughlin S, Goggins J. et al. Bone marrow edema and its relation to progression of knee osteoarthritis. Ann Intern Med 2003; 139 (5 Pt 1, 5_Part_1) 330-336
- 52 Miniaci A, Ballmer FT, Ballmer PM, Jakob RP. Proximal tibial osteotomy. A new fixation device. Clin Orthop Relat Res 1989; (246) 250-259 http://www.ncbi.nlm.nih.gov/pubmed/2766613
- 53 Blackburn J, Ansari A, Porteous A, Murray J. Reliability of two techniques and training level of the observer in measuring the correction angle when planning a high tibial osteotomy. Knee 2018; 25 (01) 130-134
- 54 Schröter S, Ihle C, Mueller J, Lobenhoffer P, Stöckle U, van Heerwaarden R. Digital planning of high tibial osteotomy. Interrater reliability by using two different software. Knee Surg Sports Traumatol Arthrosc 2013; 21 (01) 189-196
- 55 He A, Mao Y, Zhou Y. et al. Preoperative planning by osteotomy master software helps to improve the accuracy of target limb alignment in high tibial osteotomy. J Orthop Surg Res 2020; 15 (01) 504
- 56 Bartholomeeusen S, Van den Bempt M, van Beek N, Claes T, Claes S. Changes in knee joint line orientation after high tibial osteotomy are the result of adaptation of the lower limb to the new alignment. Knee 2020; 27 (03) 777-786
- 57 Nakayama H, Iseki T, Kanto R. et al. Physiologic knee joint alignment and orientation can be restored by the minimally invasive double level osteotomy for osteoarthritic knees with severe varus deformity. Knee Surg Sports Traumatol Arthrosc 2020; 28 (03) 742-750
- 58 Kubota M, Kim Y, Sato T. et al. The actual knee function was not influenced by joint line obliquity after open-wedge high tibial osteotomy. SICOT J 2020; 6: 4
- 59 Sohn S, Koh IJ, Kim MS, Kang BM, In Y. What Factors Predict Patient Dissatisfaction After Contemporary Medial Opening-Wedge High Tibial Osteotomy?. J Arthroplasty 2020; 35 (02) 318-324
- 60 Sohn S, Koh IJ, Kim MS, In Y. Risk factors and preventive strategy for excessive coronal inclination of tibial plateau following medial opening-wedge high tibial osteotomy. Arch Orthop Trauma Surg 2022; 142 (04) 561-569
- 61 van Lieshout WAM, van Ginneken BJT, Kerkhoffs GMMJ, van Heerwaarden RJ. Medial closing wedge high tibial osteotomy for valgus tibial deformities: good clinical results and survival with a mean 4.5 years of follow-up in 113 patients. Knee Surg Sports Traumatol Arthrosc 2020; 28 (09) 2798-2807
- 62 Brinkman J-M, Lobenhoffer P, Agneskirchner JD, Staubli AE, Wymenga AB, van Heerwaarden RJ. Osteotomies around the knee: patient selection, stability of fixation and bone healing in high tibial osteotomies. J Bone Joint Surg Br 2008; 90 (12) 1548-1557
- 63 Lee DH, Park SC, Park HJ, Han SB. Effect of soft tissue laxity of the knee joint on limb alignment correction in open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2016; 24 (12) 3704-3712
- 64 Ogawa H, Matsumoto K, Ogawa T, Takeuchi K, Akiyama H. Preoperative varus laxity correlates with overcorrection in medial opening wedge high tibial osteotomy. Arch Orthop Trauma Surg 2016; 136 (10) 1337-1342
- 65 Lee DK, Wang JH, Won Y. et al. Preoperative latent medial laxity and correction angle are crucial factors for overcorrection in medial open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2020; 28 (05) 1411-1418
- 66 Kumagai K, Yamada S, Akamatsu T. et al. Intraoperatively accurate limb alignment after opening wedge high tibial osteotomy can be lost by large knee joint line convergence angle during surgery. Arch Orthop Trauma Surg 2021; 141 (01) 23-28
- 67 So SY, Lee SS, Jung EY, Kim JH, Wang JH. Difference in joint line convergence angle between the supine and standing positions is the most important predictive factor of coronal correction error after medial opening wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2020; 28 (05) 1516-1525
- 68 Hernigou P, Ma W. Open wedge tibial osteotomy with acrylic bone cement as bone substitute. Knee 2001; 8 (02) 103-110
- 69 Hernigou P. Open wedge tibial osteotomy: combined coronal and sagittal correction. Knee 2002; 9 (01) 15-20
- 70 Brinkman J-M, Freiling D, Lobenhoffer P, Staubli AE, van Heerwaarden RJ. Supracondylar femur osteotomies around the knee: patient selection, planning, operative techniques, stability of fixation, and bone healing. Orthopade 2014; 43 (Suppl. 01) S1-S10
- 71 van Heerwaarden R, Najfeld M, Brinkman M, Seil R, Madry H, Pape D. Wedge volume and osteotomy surface depend on surgical technique for distal femoral osteotomy. Knee Surg Sports Traumatol Arthrosc 2013; 21 (01) 206-212
- 72 van der Woude JAD, van Heerwaarden RJ, Bleys RLAW. Periosteal vascularization of the distal femur in relation to distal femoral osteotomies: a cadaveric study. J Exp Orthop 2016; 3 (01) 6
- 73 Stähelin T, Hardegger F, Ward J-C. Supracondylar osteotomy of the femur with use of compression. Osteosynthesis with a malleable implant. J Bone Joint Surg Am 2000; 82 (05) 712-722
- 74 Kim TW, Lee MC, Cho JH, Kim JS, Lee YS. The Ideal Location of the Lateral Hinge in Medial Closing Wedge Osteotomy of the Distal Femur: Analysis of Soft Tissue Coverage and Bone Density. Am J Sports Med 2019; 47 (12) 2945-2951
- 75 Nha KW, Chang YS, Shon OJ. et al. Where is the Target Point to Prevent Cortical Hinge Fracture in Medial Closing-Wedge Distal Femoral Varus Osteotomy?. J Knee Surg 2019; 32 (03) 274-279
- 76 Brinkman J-M, Hurschler C, Agneskirchner JD, Freiling D, van Heerwaarden RJ. Axial and torsional stability of supracondylar femur osteotomies: biomechanical comparison of the stability of five different plate and osteotomy configurations. Knee Surg Sports Traumatol Arthrosc 2011; 19 (04) 579-587
- 77 Brinkman J-M, Hurschler C, Staubli AE, van Heerwaarden RJ. Axial and torsional stability of an improved single-plane and a new bi-plane osteotomy technique for supracondylar femur osteotomies. Knee Surg Sports Traumatol Arthrosc 2011; 19 (07) 1090-1098
- 78 Lobenhoffer P, Agneskirchner JD. Improvements in surgical technique of valgus high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2003; 11 (03) 132-138
- 79 Pape D, Dueck K, Haag M, Lorbach O, Seil R, Madry H. Wedge volume and osteotomy surface depend on surgical technique for high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2013; 21 (01) 127-133
- 80 Agneskirchner JD, Hurschler C, Wrann CD, Lobenhoffer P. The effects of valgus medial opening wedge high tibial osteotomy on articular cartilage pressure of the knee: a biomechanical study. Arthroscopy 2007; 23 (08) 852-861
- 81 Madry H, Goebel L, Hoffmann A. et al. Surgical anatomy of medial open-wedge high tibial osteotomy: crucial steps and pitfalls. Knee Surg Sports Traumatol Arthrosc 2017; 25 (12) 3661-3669
- 82 Han SB, Lee DH, Shetty GM, Chae DJ, Song JG, Nha KWA. A “safe zone” in medial open-wedge high tibia osteotomy to prevent lateral cortex fracture. Knee Surg Sports Traumatol Arthrosc 2013; 21 (01) 90-95
- 83 Noyes FR, Goebel SX, West J. Opening wedge tibial osteotomy: the 3-triangle method to correct axial alignment and tibial slope. Am J Sports Med 2005; 33 (03) 378-387
- 84 Gulagaci F, Jacquet C, Ehlinger M. et al. A protective hinge wire, intersecting the osteotomy plane, can reduce the occurrence of perioperative hinge fractures in medial opening wedge osteotomy. Knee Surg Sports Traumatol Arthrosc 2020; 28 (10) 3173-3182
- 85 Dessyn E, Sharma A, Donnez M. et al. Adding a protective K-wire during opening high tibial osteotomy increases lateral hinge resistance to fracture. Knee Surg Sports Traumatol Arthrosc 2020; 28 (03) 751-758
- 86 Akaoka Y, Iseki T, Kanto R. et al. Changes in patellar height and patellofemoral alignment following double level osteotomy performed for osteoarthritic knees with severe varus deformity. Asia Pac J Sports Med Arthrosc Rehabil Technol 2020; 22: 20-26
- 87 Gaasbeek RDA, Sonneveld H, van Heerwaarden RJ, Jacobs WCH, Wymenga AB. Distal tuberosity osteotomy in open wedge high tibial osteotomy can prevent patella infera: a new technique. Knee 2004; 11 (06) 457-461
- 88 Monllau JC, Erquicia JI, Ibañez F. et al. Open-Wedge Valgus High Tibial Osteotomy Technique With Inverted L-Shaped Configuration. Arthrosc Tech 2017; 6 (06) e2161-e2167
- 89 Krause M, Drenck TC, Korthaus A, Preiss A, Frosch KH, Akoto R. Patella height is not altered by descending medial open-wedge high tibial osteotomy (HTO) compared to ascending HTO. Knee Surg Sports Traumatol Arthrosc 2018; 26 (06) 1859-1866
- 90 Erquicia J, Gelber PE, Perelli S. et al. Biplane opening wedge high tibial osteotomy with a distal tuberosity osteotomy, radiological and clinical analysis with minimum follow-up of 2 years. J Exp Orthop 2019; 6 (01) 10
- 91 Jacquet C, Marret A, Myon R. et al. Adding a protective screw improves hinge's axial and torsional stability in High Tibial Osteotomy. Clin Biomech (Bristol, Avon) 2020; 74: 96-102
- 92 Slevin O, Ayeni OR, Hinterwimmer S, Tischer T, Feucht MJ, Hirschmann MT. The role of bone void fillers in medial opening wedge high tibial osteotomy: a systematic review. Knee Surg Sports Traumatol Arthrosc 2016; 24 (11) 3584-3598
- 93 Fucentese SF, Tscholl PM, Sutter R, Brucker PU, Meyer DC, Koch PP. Bone autografting in medial open wedge high tibial osteotomy results in improved osseous gap healing on computed tomography, but no functional advantage: a prospective, randomised, controlled trial. Knee Surg Sports Traumatol Arthrosc 2019; 27 (09) 2951-2957
- 94 Meidinger G, Imhoff AB, Paul J, Kirchhoff C, Sauerschnig M, Hinterwimmer S. May smokers and overweight patients be treated with a medial open-wedge HTO? Risk factors for non-union. Knee Surg Sports Traumatol Arthrosc 2011; 19 (03) 333-339
- 95 Sidhu R, Moatshe G, Firth A, Litchfield R, Getgood A. Low rates of serious complications but high rates of hardware removal after high tibial osteotomy with Tomofix locking plate. Knee Surg Sports Traumatol Arthrosc 2021; 29 (10) 3361-3367
- 96 Nakayama H, Kanto R, Onishi S. et al. Hinge fracture in lateral closed-wedge distal femoral osteotomy in knees undergoing double-level osteotomy: assessment of postoperative change in rotational alignment using CT evaluation. Knee Surg Sports Traumatol Arthrosc 2021; 29 (10) 3337-3345
- 97 Takeuchi R, Ishikawa H, Kumagai K. et al. Fractures around the lateral cortical hinge after a medial opening-wedge high tibial osteotomy: a new classification of lateral hinge fracture. Arthroscopy 2012; 28 (01) 85-94
- 98 Rupp M-C, Winkler PW, Lutz PM. et al. Dislocated hinge fractures are associated with malunion after lateral closing wedge distal femoral osteotomy. Knee Surg Sports Traumatol Arthrosc 2022; 30 (03) 982-992
- 99 Liska F, Haller B, Voss A. et al. Smoking and obesity influence the risk of nonunion in lateral opening wedge, closing wedge and torsional distal femoral osteotomies. Knee Surg Sports Traumatol Arthrosc 2018; 26 (09) 2551-2557
- 100 Wylie JD, Jones DL, Hartley MK. et al. Distal Femoral Osteotomy for the Valgus Knee: Medial Closing Wedge Versus Lateral Opening Wedge: A Systematic Review. Arthroscopy 2016; 32 (10) 2141-2147
- 101 Martin R, Birmingham TB, Willits K, Litchfield R, Lebel M-E, Giffin JR. Adverse event rates and classifications in medial opening wedge high tibial osteotomy. Am J Sports Med 2014; 42 (05) 1118-1126
- 102 Schenke M, Dickschas J, Simon M, Strecker W. Corrective osteotomies of the lower limb show a low intra- and perioperative complication rate-an analysis of 1003 patients. Knee Surg Sports Traumatol Arthrosc 2018; 26 (06) 1867-1872
- 103 Bisicchia S, Rosso F, Pizzimenti MA, Rungprai C, Goetz JE, Amendola A. Injury risk to extraosseous knee vasculature during osteotomies: a cadaveric study with CT and dissection analysis. Clin Orthop Relat Res 2015; 473 (03) 1030-1039
- 104 Kim J, Allaire R, Harner CD. Vascular safety during high tibial osteotomy: a cadaveric angiographic study. Am J Sports Med 2010; 38 (04) 810-815
- 105 Kang T, Lee DW, Park JY, Han HS, Lee MC, Ro DH. Sawing toward the fibular head during open-wedge high tibial osteotomy carries the risk of popliteal artery injury. Knee Surg Sports Traumatol Arthrosc 2020; 28 (05) 1365-1371
- 106 Klecker RJ, Winalski CS, Aliabadi P, Minas T. The aberrant anterior tibial artery: magnetic resonance appearance, prevalence, and surgical implications. Am J Sports Med 2008; 36 (04) 720-727
- 107 Kley K, Bin Abd Razak HR, Khakha RS, Wilson AJ, van Heerwaarden R, Ollivier M. Soft-Tissue Management and Neurovascular Protection During Opening-Wedge High Tibial Osteotomy. Arthrosc Tech 2021; 10 (02) e419-e422
- 108 Brinkman J-M, Luites JW, Wymenga AB, van Heerwaarden RJ. Early full weight bearing is safe in open-wedge high tibial osteotomy. Acta Orthop 2010; 81 (02) 193-198
- 109 Hai H, Takahashi I, Shima N, Udono K, Yamaguchi N, Ito A. Preliminary Evaluation of the Efficacy of Postoperative Early Weight-bearing Rehabilitation Protocol for Patients after Double-level Osteotomy. Prog Rehabil Med 2020; 5: 20200017
- 110 Hoorntje A, Witjes S, Kuijer PPFM. et al. High Rates of Return to Sports Activities and Work After Osteotomies Around the Knee: A Systematic Review and Meta-Analysis. Sports Med 2017; 47 (11) 2219-2244
- 111 Nakayama H, Kanto R, Onishi S. et al. Cartilage repair examined by second-look arthroscopy following double-level osteotomy performed for osteoarthritic knees with severe varus deformity. Knee 2021; 29: 411-417
- 112 Hoorntje A, Kuijer PPFM, van Ginneken BT. et al. Prognostic Factors for Return to Sport After High Tibial Osteotomy: A Directed Acyclic Graph Approach. Am J Sports Med 2019; 47 (08) 1854-1862
- 113 Hoorntje A, Kuijer PPFM, van Ginneken BT. et al. Predictors of Return to Work After High Tibial Osteotomy: The Importance of Being a Breadwinner. Orthop J Sports Med 2019; 7 (12) 2325967119890056
- 114 Hoorntje A, van Ginneken BT, Kuijer PPFM. et al. Eight respectively nine out of ten patients return to sport and work after distal femoral osteotomy. Knee Surg Sports Traumatol Arthrosc 2019; 27 (07) 2345-2353
- 115 Rupp MC, Muench LN, Ehmann YJ. et al. Improved Clinical Outcome and High Rate of Return to Low-Impact Sport and Work After Knee Double Level Osteotomy for Bifocal Varus Malalignment. Arthroscopy 2022; 38 (06) 1944-1953
- 116 Grünwald L, Angele P, Schröter S. et al. Patients' expectations of osteotomies around the knee are high regarding activities of daily living. Knee Surg Sports Traumatol Arthrosc 2019; 27 (09) 3022-3031
Address for correspondence
Publication History
Received: 20 August 2021
Accepted: 20 June 2022
Article published online:
03 October 2022
© 2022. Sociedad Chilena de Ortopedia y Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
Referencias
- 1 Arnold MP, Hirschmann MT, Verdonk PCM. See the whole picture: knee preserving therapy needs more than surface repair. Knee Surg Sports Traumatol Arthrosc 2012; 20 (02) 195-196
- 2 Tanamas S, Hanna FS, Cicuttini FM, Wluka AE, Berry P, Urquhart DM. Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review. Arthritis Rheum 2009; 61 (04) 459-467
- 3 Fujisawa Y, Masuhara K, Shiomi S. The effect of high tibial osteotomy on osteoarthritis of the knee. An arthroscopic study of 54 knee joints. Orthop Clin North Am 1979; 10 (03) 585-608 http://www.ncbi.nlm.nih.gov/pubmed/460834
- 4 Wakabayashi S, Akizuki S, Takizawa T, Yasukawa Y. A comparison of the healing potential of fibrillated cartilage versus eburnated bone in osteoarthritic knees after high tibial osteotomy: An arthroscopic study with 1-year follow-up. Arthroscopy 2002; 18 (03) 272-278
- 5 Koshino T, Wada S, Ara Y, Saito T. Regeneration of degenerated articular cartilage after high tibial valgus osteotomy for medial compartmental osteoarthritis of the knee. Knee 2003; 10 (03) 229-236
- 6 Kröner AH, Berger CE, Kluger R, Oberhauser G, Bock P, Engel A. Influence of high tibial osteotomy on bone marrow edema in the knee. Clin Orthop Relat Res 2007; 454 (454) 155-162
- 7 Jung WH, Takeuchi R, Chun CW. et al. Second-look arthroscopic assessment of cartilage regeneration after medial opening-wedge high tibial osteotomy. Arthroscopy 2014; 30 (01) 72-79
- 8 d'Entremont AG, McCormack RG, Agbanlog K. et al. Cartilage health in high tibial osteotomy using dGEMRIC: Relationships with joint kinematics. Knee 2015; 22 (03) 156-162
- 9 Kim Il KI, Seo MC, Song SJ, Bae DK, Kim DH, Lee SH. Change of Chondral Lesions and Predictive Factors After Medial Open-Wedge High Tibial Osteotomy With a Locked Plate System. Am J Sports Med 2017; 45 (07) 1615-1621
- 10 Lee OS, Ahn S, Ahn JH, Teo SH, Lee YS. Effectiveness of concurrent procedures during high tibial osteotomy for medial compartment osteoarthritis: a systematic review and meta-analysis. Arch Orthop Trauma Surg 2018; 138 (02) 227-236
- 11 van Heerwaarden RJ, Hirschmann MT. Knee joint preservation: a call for daily practice revival of realignment surgery and osteotomies around the knee. Knee Surg Sports Traumatol Arthrosc 2017; 25 (12) 3655-3656
- 12 Paley D, Pfeil J. [Principles of deformity correction around the knee]. Orthopade 2000; 29 (01) 18-38
- 13 Paley D, Herzenberg JE, Tetsworth K, McKie J, Bhave A. Deformity planning for frontal and sagittal plane corrective osteotomies. Orthop Clin North Am 1994; 25 (03) 425-465 http://www.ncbi.nlm.nih.gov/pubmed/8028886
- 14 Micicoi G, Khakha R, Kley K, Wilson A, Cerciello S, Ollivier M. Managing intra-articular deformity in high Tibial osteotomy: a narrative review. J Exp Orthop 2020; 7 (01) 65
- 15 Ji W, Luo C, Zhan Y, Xie X, He Q, Zhang B. A residual intra-articular varus after medial opening wedge high tibial osteotomy (HTO) for varus osteoarthritis of the knee. Arch Orthop Trauma Surg 2019; 139 (06) 743-750
- 16 Chiba K, Yonekura A, Miyamoto T, Osaki M, Chiba G. Tibial condylar valgus osteotomy (TCVO) for osteoarthritis of the knee: 5-year clinical and radiological results. Arch Orthop Trauma Surg 2017; 137 (03) 303-310
- 17 Higuchi T, Koseki H, Yonekura A. et al. Comparison of radiological features of high tibial osteotomy and tibial condylar valgus osteotomy. BMC Musculoskelet Disord 2019; 20 (01) 409
- 18 Kuwashima U, Yonekura A, Itoh M, Itou J, Okazaki K. Tibial condylar valgus osteotomy - indications and technique. J Exp Orthop 2020; 7 (01) 30
- 19 Saito H, Yonekura A, Saito K. et al. A new double level osteotomy procedure to restore a joint line and joint angles in severe varus osteoarthritis. - Double level osteotomy associated with tibial condylar valgus osteotomy (DLOTO). Asia Pac J Sports Med Arthrosc Rehabil Technol 2020; 24: 9-13
- 20 Brinkman J-M, Rutten B, van Heerwaarden R. Total Knee Arthroplasty in Combination with Osteotomies around the Knee. J Knee Surg 2017; 30 (08) 774-783
- 21 Lobenhoffer P. The Rationale of Osteotomy around the Knee. J Knee Surg 2017; 30 (05) 386-392
- 22 Dugdale TW, Noyes FR, Styer D. Preoperative planning for high tibial osteotomy. The effect of lateral tibiofemoral separation and tibiofemoral length. Clin Orthop Relat Res 1992; (274) 248-264 http://www.ncbi.nlm.nih.gov/pubmed/1729010
- 23 Marti CB, Gautier E, Wachtl SW, Jakob RP. Accuracy of frontal and sagittal plane correction in open-wedge high tibial osteotomy. Arthroscopy 2004; 20 (04) 366-372
- 24 Müller M, Strecker W. Arthroscopy prior to osteotomy around the knee?. Arch Orthop Trauma Surg 2008; 128 (11) 1217-1221
- 25 Feucht MJ, Minzlaff P, Saier T. et al. Degree of axis correction in valgus high tibial osteotomy: proposal of an individualised approach. Int Orthop 2014; 38 (11) 2273-2280
- 26 Hohloch L, Kim S, Mehl J. et al. Customized post-operative alignment improves clinical outcome following medial open-wedge osteotomy. Knee Surg Sports Traumatol Arthrosc 2018; 26 (09) 2766-2773
- 27 Bonnin M, Chambat P. [Current status of valgus angle, tibial head closing wedge osteotomy in media gonarthrosis]. Orthopade 2004; 33 (02) 135-142
- 28 Jenny JY, Tavan A, Jenny G, Kehr P. [Long-term survival rate of tibial osteotomies for valgus gonarthrosis]. Rev Chir Orthop Repar Appar Mot 1998; 84 (04) 350-357
- 29 Jenny J-Y, Boéri C, Ballonzoli L, Meyer N. Difficultés et reproductibilité de la mesure radiographique de l'axe épiphysaire proximal du tibia selon la technique de Lévigne. Rev Chir Orthop Repar Appar Mot 2005; 91 (07) 658-663
- 30 van Raaij TM, Takacs I, Reijman M, Verhaar JAN. Varus inclination of the proximal tibia or the distal femur does not influence high tibial osteotomy outcome. Knee Surg Sports Traumatol Arthrosc 2009; 17 (04) 390-395
- 31 van Heerwaarden R, Brinkman JM, Pronk Y. Correction of Femoral Valgus Deformity. J Knee Surg 2017; 30 (08) 746-755
- 32 Shivji FS, Foster A, Risebury MJ, Wilson AJ, Yasen SK. Ten-year survival rate of 89% after distal femoral osteotomy surgery for lateral compartment osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 2021; 29 (02) 594-599
- 33 Babis GC, An K-N, Chao EYS, Rand JA, Sim FH. Double level osteotomy of the knee: a method to retain joint-line obliquity. Clinical results. J Bone Joint Surg Am 2002; 84 (08) 1380-1388
- 34 Saragaglia D, Mercier N, Colle PE. Computer-assisted osteotomies for genu varum deformity: which osteotomy for which varus?. Int Orthop 2010; 34 (02) 185-190
- 35 Oh KJ, Ko YB, Bae JH, Yoon ST, Kim JG. Analysis of Knee Joint Line Obliquity after High Tibial Osteotomy. J Knee Surg 2016; 29 (08) 649-657
- 36 Song JH, Bin Il SI, Kim JM, Lee BS. What Is An Acceptable Limit of Joint-Line Obliquity After Medial Open Wedge High Tibial Osteotomy? Analysis Based on Midterm Results. Am J Sports Med 2020; 48 (12) 3028-3035
- 37 Nakayama H, Schröter S, Yamamoto C. et al. Large correction in opening wedge high tibial osteotomy with resultant joint-line obliquity induces excessive shear stress on the articular cartilage. Knee Surg Sports Traumatol Arthrosc 2018; 26 (06) 1873-1878
- 38 Wang D, Willinger L, Athwal KK, Williams A, Amis AA. Knee Joint Line Obliquity Causes Tibiofemoral Subluxation That Alters Contact Areas and Meniscal Loading. Am J Sports Med 2021; 49 (09) 2351-2360
- 39 Park JY, Chang CB, Kang DW, Oh S, Kang SB, Lee MC. Development and validation of a prediction model for knee joint line orientation after high tibial osteotomy. BMC Musculoskelet Disord 2019; 20 (01) 434
- 40 Park J-G, Bin S-I, Kim J-M, Lee B-S. Using the Lower Limb Adduction Angle to Predict Postoperative Knee Joint-Line Obliquity After Open-Wedge High Tibial Osteotomy. Orthop J Sports Med 2021; 9 (05) :23259671211003991
- 41 Eberbach H, Mehl J, Feucht MJ, Bode G, Südkamp NP, Niemeyer P. Geometry of the Valgus Knee: Contradicting the Dogma of a Femoral-Based Deformity. Am J Sports Med 2017; 45 (04) 909-914
- 42 Feucht MJ, Winkler PW, Mehl J. et al. Isolated high tibial osteotomy is appropriate in less than two-thirds of varus knees if excessive overcorrection of the medial proximal tibial angle should be avoided. Knee Surg Sports Traumatol Arthrosc 2021; 29 (10) 3299-3309
- 43 Akamatsu Y, Kumagai K, Kobayashi H, Tsuji M, Saito T. Effect of Increased Coronal Inclination of the Tibial Plateau After Opening-Wedge High Tibial Osteotomy. Arthroscopy 2018; 34 (07) 2158-2169.e2
- 44 Schuster P, Geßlein M, Schlumberger M. et al. Ten-Year Results of Medial Open-Wedge High Tibial Osteotomy and Chondral Resurfacing in Severe Medial Osteoarthritis and Varus Malalignment. Am J Sports Med 2018; 46 (06) 1362-1370
- 45 Ogawa H, Matsumoto K, Akiyama H. Coronal tibiofemoral subluxation is correlated to correction angle in medial opening wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2018; 26 (11) 3482-3490
- 46 Saragaglia D, Blaysat M, Mercier N, Grimaldi M. Results of forty two computer-assisted double level osteotomies for severe genu varum deformity. Int Orthop 2012; 36 (05) 999-1003
- 47 Saragaglia D, Chedal-Bornu B, Rouchy RC, Rubens-Duval B, Mader R, Pailhé R. Role of computer-assisted surgery in osteotomies around the knee. Knee Surg Sports Traumatol Arthrosc 2016; 24 (11) 3387-3395
- 48 Roessler PP, Getgood A. The Role of Osteotomy in Chronic Valgus Instability and Hyperextension Valgus Thrust (Medial Closing Wedge Distal Femoral Varus Osteotomy and Lateral Opening Wedge High Tibial Osteotomy). Clin Sports Med 2019; 38 (03) 435-449
- 49 Díaz Allende P. Principios Biomecánicos en Inestabilidad Crónica Posterolateral de Rodilla. Rev Chil Ortop y Traumatol 2017; 58 (02) 041-047
- 50 Nha KW, Oh SM, Ha YW, Patel MK, Seo JH, Lee BH. Radiological grading of osteoarthritis on Rosenberg view has a significant correlation with clinical outcomes after medial open-wedge high-tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2019; 27 (06) 2021-2029
- 51 Felson DT, McLaughlin S, Goggins J. et al. Bone marrow edema and its relation to progression of knee osteoarthritis. Ann Intern Med 2003; 139 (5 Pt 1, 5_Part_1) 330-336
- 52 Miniaci A, Ballmer FT, Ballmer PM, Jakob RP. Proximal tibial osteotomy. A new fixation device. Clin Orthop Relat Res 1989; (246) 250-259 http://www.ncbi.nlm.nih.gov/pubmed/2766613
- 53 Blackburn J, Ansari A, Porteous A, Murray J. Reliability of two techniques and training level of the observer in measuring the correction angle when planning a high tibial osteotomy. Knee 2018; 25 (01) 130-134
- 54 Schröter S, Ihle C, Mueller J, Lobenhoffer P, Stöckle U, van Heerwaarden R. Digital planning of high tibial osteotomy. Interrater reliability by using two different software. Knee Surg Sports Traumatol Arthrosc 2013; 21 (01) 189-196
- 55 He A, Mao Y, Zhou Y. et al. Preoperative planning by osteotomy master software helps to improve the accuracy of target limb alignment in high tibial osteotomy. J Orthop Surg Res 2020; 15 (01) 504
- 56 Bartholomeeusen S, Van den Bempt M, van Beek N, Claes T, Claes S. Changes in knee joint line orientation after high tibial osteotomy are the result of adaptation of the lower limb to the new alignment. Knee 2020; 27 (03) 777-786
- 57 Nakayama H, Iseki T, Kanto R. et al. Physiologic knee joint alignment and orientation can be restored by the minimally invasive double level osteotomy for osteoarthritic knees with severe varus deformity. Knee Surg Sports Traumatol Arthrosc 2020; 28 (03) 742-750
- 58 Kubota M, Kim Y, Sato T. et al. The actual knee function was not influenced by joint line obliquity after open-wedge high tibial osteotomy. SICOT J 2020; 6: 4
- 59 Sohn S, Koh IJ, Kim MS, Kang BM, In Y. What Factors Predict Patient Dissatisfaction After Contemporary Medial Opening-Wedge High Tibial Osteotomy?. J Arthroplasty 2020; 35 (02) 318-324
- 60 Sohn S, Koh IJ, Kim MS, In Y. Risk factors and preventive strategy for excessive coronal inclination of tibial plateau following medial opening-wedge high tibial osteotomy. Arch Orthop Trauma Surg 2022; 142 (04) 561-569
- 61 van Lieshout WAM, van Ginneken BJT, Kerkhoffs GMMJ, van Heerwaarden RJ. Medial closing wedge high tibial osteotomy for valgus tibial deformities: good clinical results and survival with a mean 4.5 years of follow-up in 113 patients. Knee Surg Sports Traumatol Arthrosc 2020; 28 (09) 2798-2807
- 62 Brinkman J-M, Lobenhoffer P, Agneskirchner JD, Staubli AE, Wymenga AB, van Heerwaarden RJ. Osteotomies around the knee: patient selection, stability of fixation and bone healing in high tibial osteotomies. J Bone Joint Surg Br 2008; 90 (12) 1548-1557
- 63 Lee DH, Park SC, Park HJ, Han SB. Effect of soft tissue laxity of the knee joint on limb alignment correction in open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2016; 24 (12) 3704-3712
- 64 Ogawa H, Matsumoto K, Ogawa T, Takeuchi K, Akiyama H. Preoperative varus laxity correlates with overcorrection in medial opening wedge high tibial osteotomy. Arch Orthop Trauma Surg 2016; 136 (10) 1337-1342
- 65 Lee DK, Wang JH, Won Y. et al. Preoperative latent medial laxity and correction angle are crucial factors for overcorrection in medial open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2020; 28 (05) 1411-1418
- 66 Kumagai K, Yamada S, Akamatsu T. et al. Intraoperatively accurate limb alignment after opening wedge high tibial osteotomy can be lost by large knee joint line convergence angle during surgery. Arch Orthop Trauma Surg 2021; 141 (01) 23-28
- 67 So SY, Lee SS, Jung EY, Kim JH, Wang JH. Difference in joint line convergence angle between the supine and standing positions is the most important predictive factor of coronal correction error after medial opening wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2020; 28 (05) 1516-1525
- 68 Hernigou P, Ma W. Open wedge tibial osteotomy with acrylic bone cement as bone substitute. Knee 2001; 8 (02) 103-110
- 69 Hernigou P. Open wedge tibial osteotomy: combined coronal and sagittal correction. Knee 2002; 9 (01) 15-20
- 70 Brinkman J-M, Freiling D, Lobenhoffer P, Staubli AE, van Heerwaarden RJ. Supracondylar femur osteotomies around the knee: patient selection, planning, operative techniques, stability of fixation, and bone healing. Orthopade 2014; 43 (Suppl. 01) S1-S10
- 71 van Heerwaarden R, Najfeld M, Brinkman M, Seil R, Madry H, Pape D. Wedge volume and osteotomy surface depend on surgical technique for distal femoral osteotomy. Knee Surg Sports Traumatol Arthrosc 2013; 21 (01) 206-212
- 72 van der Woude JAD, van Heerwaarden RJ, Bleys RLAW. Periosteal vascularization of the distal femur in relation to distal femoral osteotomies: a cadaveric study. J Exp Orthop 2016; 3 (01) 6
- 73 Stähelin T, Hardegger F, Ward J-C. Supracondylar osteotomy of the femur with use of compression. Osteosynthesis with a malleable implant. J Bone Joint Surg Am 2000; 82 (05) 712-722
- 74 Kim TW, Lee MC, Cho JH, Kim JS, Lee YS. The Ideal Location of the Lateral Hinge in Medial Closing Wedge Osteotomy of the Distal Femur: Analysis of Soft Tissue Coverage and Bone Density. Am J Sports Med 2019; 47 (12) 2945-2951
- 75 Nha KW, Chang YS, Shon OJ. et al. Where is the Target Point to Prevent Cortical Hinge Fracture in Medial Closing-Wedge Distal Femoral Varus Osteotomy?. J Knee Surg 2019; 32 (03) 274-279
- 76 Brinkman J-M, Hurschler C, Agneskirchner JD, Freiling D, van Heerwaarden RJ. Axial and torsional stability of supracondylar femur osteotomies: biomechanical comparison of the stability of five different plate and osteotomy configurations. Knee Surg Sports Traumatol Arthrosc 2011; 19 (04) 579-587
- 77 Brinkman J-M, Hurschler C, Staubli AE, van Heerwaarden RJ. Axial and torsional stability of an improved single-plane and a new bi-plane osteotomy technique for supracondylar femur osteotomies. Knee Surg Sports Traumatol Arthrosc 2011; 19 (07) 1090-1098
- 78 Lobenhoffer P, Agneskirchner JD. Improvements in surgical technique of valgus high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2003; 11 (03) 132-138
- 79 Pape D, Dueck K, Haag M, Lorbach O, Seil R, Madry H. Wedge volume and osteotomy surface depend on surgical technique for high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2013; 21 (01) 127-133
- 80 Agneskirchner JD, Hurschler C, Wrann CD, Lobenhoffer P. The effects of valgus medial opening wedge high tibial osteotomy on articular cartilage pressure of the knee: a biomechanical study. Arthroscopy 2007; 23 (08) 852-861
- 81 Madry H, Goebel L, Hoffmann A. et al. Surgical anatomy of medial open-wedge high tibial osteotomy: crucial steps and pitfalls. Knee Surg Sports Traumatol Arthrosc 2017; 25 (12) 3661-3669
- 82 Han SB, Lee DH, Shetty GM, Chae DJ, Song JG, Nha KWA. A “safe zone” in medial open-wedge high tibia osteotomy to prevent lateral cortex fracture. Knee Surg Sports Traumatol Arthrosc 2013; 21 (01) 90-95
- 83 Noyes FR, Goebel SX, West J. Opening wedge tibial osteotomy: the 3-triangle method to correct axial alignment and tibial slope. Am J Sports Med 2005; 33 (03) 378-387
- 84 Gulagaci F, Jacquet C, Ehlinger M. et al. A protective hinge wire, intersecting the osteotomy plane, can reduce the occurrence of perioperative hinge fractures in medial opening wedge osteotomy. Knee Surg Sports Traumatol Arthrosc 2020; 28 (10) 3173-3182
- 85 Dessyn E, Sharma A, Donnez M. et al. Adding a protective K-wire during opening high tibial osteotomy increases lateral hinge resistance to fracture. Knee Surg Sports Traumatol Arthrosc 2020; 28 (03) 751-758
- 86 Akaoka Y, Iseki T, Kanto R. et al. Changes in patellar height and patellofemoral alignment following double level osteotomy performed for osteoarthritic knees with severe varus deformity. Asia Pac J Sports Med Arthrosc Rehabil Technol 2020; 22: 20-26
- 87 Gaasbeek RDA, Sonneveld H, van Heerwaarden RJ, Jacobs WCH, Wymenga AB. Distal tuberosity osteotomy in open wedge high tibial osteotomy can prevent patella infera: a new technique. Knee 2004; 11 (06) 457-461
- 88 Monllau JC, Erquicia JI, Ibañez F. et al. Open-Wedge Valgus High Tibial Osteotomy Technique With Inverted L-Shaped Configuration. Arthrosc Tech 2017; 6 (06) e2161-e2167
- 89 Krause M, Drenck TC, Korthaus A, Preiss A, Frosch KH, Akoto R. Patella height is not altered by descending medial open-wedge high tibial osteotomy (HTO) compared to ascending HTO. Knee Surg Sports Traumatol Arthrosc 2018; 26 (06) 1859-1866
- 90 Erquicia J, Gelber PE, Perelli S. et al. Biplane opening wedge high tibial osteotomy with a distal tuberosity osteotomy, radiological and clinical analysis with minimum follow-up of 2 years. J Exp Orthop 2019; 6 (01) 10
- 91 Jacquet C, Marret A, Myon R. et al. Adding a protective screw improves hinge's axial and torsional stability in High Tibial Osteotomy. Clin Biomech (Bristol, Avon) 2020; 74: 96-102
- 92 Slevin O, Ayeni OR, Hinterwimmer S, Tischer T, Feucht MJ, Hirschmann MT. The role of bone void fillers in medial opening wedge high tibial osteotomy: a systematic review. Knee Surg Sports Traumatol Arthrosc 2016; 24 (11) 3584-3598
- 93 Fucentese SF, Tscholl PM, Sutter R, Brucker PU, Meyer DC, Koch PP. Bone autografting in medial open wedge high tibial osteotomy results in improved osseous gap healing on computed tomography, but no functional advantage: a prospective, randomised, controlled trial. Knee Surg Sports Traumatol Arthrosc 2019; 27 (09) 2951-2957
- 94 Meidinger G, Imhoff AB, Paul J, Kirchhoff C, Sauerschnig M, Hinterwimmer S. May smokers and overweight patients be treated with a medial open-wedge HTO? Risk factors for non-union. Knee Surg Sports Traumatol Arthrosc 2011; 19 (03) 333-339
- 95 Sidhu R, Moatshe G, Firth A, Litchfield R, Getgood A. Low rates of serious complications but high rates of hardware removal after high tibial osteotomy with Tomofix locking plate. Knee Surg Sports Traumatol Arthrosc 2021; 29 (10) 3361-3367
- 96 Nakayama H, Kanto R, Onishi S. et al. Hinge fracture in lateral closed-wedge distal femoral osteotomy in knees undergoing double-level osteotomy: assessment of postoperative change in rotational alignment using CT evaluation. Knee Surg Sports Traumatol Arthrosc 2021; 29 (10) 3337-3345
- 97 Takeuchi R, Ishikawa H, Kumagai K. et al. Fractures around the lateral cortical hinge after a medial opening-wedge high tibial osteotomy: a new classification of lateral hinge fracture. Arthroscopy 2012; 28 (01) 85-94
- 98 Rupp M-C, Winkler PW, Lutz PM. et al. Dislocated hinge fractures are associated with malunion after lateral closing wedge distal femoral osteotomy. Knee Surg Sports Traumatol Arthrosc 2022; 30 (03) 982-992
- 99 Liska F, Haller B, Voss A. et al. Smoking and obesity influence the risk of nonunion in lateral opening wedge, closing wedge and torsional distal femoral osteotomies. Knee Surg Sports Traumatol Arthrosc 2018; 26 (09) 2551-2557
- 100 Wylie JD, Jones DL, Hartley MK. et al. Distal Femoral Osteotomy for the Valgus Knee: Medial Closing Wedge Versus Lateral Opening Wedge: A Systematic Review. Arthroscopy 2016; 32 (10) 2141-2147
- 101 Martin R, Birmingham TB, Willits K, Litchfield R, Lebel M-E, Giffin JR. Adverse event rates and classifications in medial opening wedge high tibial osteotomy. Am J Sports Med 2014; 42 (05) 1118-1126
- 102 Schenke M, Dickschas J, Simon M, Strecker W. Corrective osteotomies of the lower limb show a low intra- and perioperative complication rate-an analysis of 1003 patients. Knee Surg Sports Traumatol Arthrosc 2018; 26 (06) 1867-1872
- 103 Bisicchia S, Rosso F, Pizzimenti MA, Rungprai C, Goetz JE, Amendola A. Injury risk to extraosseous knee vasculature during osteotomies: a cadaveric study with CT and dissection analysis. Clin Orthop Relat Res 2015; 473 (03) 1030-1039
- 104 Kim J, Allaire R, Harner CD. Vascular safety during high tibial osteotomy: a cadaveric angiographic study. Am J Sports Med 2010; 38 (04) 810-815
- 105 Kang T, Lee DW, Park JY, Han HS, Lee MC, Ro DH. Sawing toward the fibular head during open-wedge high tibial osteotomy carries the risk of popliteal artery injury. Knee Surg Sports Traumatol Arthrosc 2020; 28 (05) 1365-1371
- 106 Klecker RJ, Winalski CS, Aliabadi P, Minas T. The aberrant anterior tibial artery: magnetic resonance appearance, prevalence, and surgical implications. Am J Sports Med 2008; 36 (04) 720-727
- 107 Kley K, Bin Abd Razak HR, Khakha RS, Wilson AJ, van Heerwaarden R, Ollivier M. Soft-Tissue Management and Neurovascular Protection During Opening-Wedge High Tibial Osteotomy. Arthrosc Tech 2021; 10 (02) e419-e422
- 108 Brinkman J-M, Luites JW, Wymenga AB, van Heerwaarden RJ. Early full weight bearing is safe in open-wedge high tibial osteotomy. Acta Orthop 2010; 81 (02) 193-198
- 109 Hai H, Takahashi I, Shima N, Udono K, Yamaguchi N, Ito A. Preliminary Evaluation of the Efficacy of Postoperative Early Weight-bearing Rehabilitation Protocol for Patients after Double-level Osteotomy. Prog Rehabil Med 2020; 5: 20200017
- 110 Hoorntje A, Witjes S, Kuijer PPFM. et al. High Rates of Return to Sports Activities and Work After Osteotomies Around the Knee: A Systematic Review and Meta-Analysis. Sports Med 2017; 47 (11) 2219-2244
- 111 Nakayama H, Kanto R, Onishi S. et al. Cartilage repair examined by second-look arthroscopy following double-level osteotomy performed for osteoarthritic knees with severe varus deformity. Knee 2021; 29: 411-417
- 112 Hoorntje A, Kuijer PPFM, van Ginneken BT. et al. Prognostic Factors for Return to Sport After High Tibial Osteotomy: A Directed Acyclic Graph Approach. Am J Sports Med 2019; 47 (08) 1854-1862
- 113 Hoorntje A, Kuijer PPFM, van Ginneken BT. et al. Predictors of Return to Work After High Tibial Osteotomy: The Importance of Being a Breadwinner. Orthop J Sports Med 2019; 7 (12) 2325967119890056
- 114 Hoorntje A, van Ginneken BT, Kuijer PPFM. et al. Eight respectively nine out of ten patients return to sport and work after distal femoral osteotomy. Knee Surg Sports Traumatol Arthrosc 2019; 27 (07) 2345-2353
- 115 Rupp MC, Muench LN, Ehmann YJ. et al. Improved Clinical Outcome and High Rate of Return to Low-Impact Sport and Work After Knee Double Level Osteotomy for Bifocal Varus Malalignment. Arthroscopy 2022; 38 (06) 1944-1953
- 116 Grünwald L, Angele P, Schröter S. et al. Patients' expectations of osteotomies around the knee are high regarding activities of daily living. Knee Surg Sports Traumatol Arthrosc 2019; 27 (09) 3022-3031