Semin Musculoskelet Radiol 2022; 26(06): 755-776
DOI: 10.1055/s-0042-1760244
Review Article

Postsurgical Evaluation of the Pediatric Foot and Ankle

1   Department of Radiology, Auckland City Hospital, Auckland, New Zealand
2   Department of Radiology. IMSKE, València, Spain
,
Alberto Bazzocchi
3   Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
,
4   Diagnostic Imaging Department, “Reine Fabiola” Children's University Hospital, Université Libre de Bruxelles, Brussels, Belgium
,
Emilio J. Inarejos Clemente
5   Department of Radiology, Hospital Sant Joan de Déu, Barcelona, Spain
› Author Affiliations

Abstract

This article reviews situations in which surgical treatment is required in the context of different types of pathology in the foot and ankle of children, focusing on the role of imaging in surgical planning and postsurgical assessment. The types of pathology analyzed from this perspective are congenital pathology, neuromuscular disorders, osteochondral lesions, fractures and infection, ligament injuries, and tumors.

We address the most common pitfalls of postsurgical imaging of the ankle and foot in children. With some exceptions, postsurgical follow-up focuses on clinical assessment, with imaging follow-up only needed in patients where complications are suspected or symptoms recur. Postoperative assessment of the foot and ankle in children and adolescents requires knowing the indications for surgery and the most common types of interventions, along with their imaging characteristics. The radiologist needs to be aware of the normal sequence of development of structures and how to select adequate imaging techniques to assess anatomy at various stages or in different postsurgical scenarios.



Publication History

Article published online:
15 February 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Michael Hoffman J. An atlas of normal roentgen variants that may simulate disease. By Theodore E. Keats. xiv + 351 pp., figures. Year Book Medical Publishers, Chicago, 1973. $35.00 (cloth). Am J Phys Anthropol 1977; 47 (03) 499-500
  • 2 Brossmann J, Czerny C, Freyschmidt J. eds. Freyschmidt's “Köhler/Zimmer”: Grenzen des Normalen und Anfänge des Pathologischen in der Radiologie des kindlichen und erwachsenen Skeletts. 14th ed. Stuttgart, Germany: Thieme; 2001:b-002-54071
  • 3 Aparisi Gómez MP, Aparisi F, Bartoloni A. et al. Anatomical variation in the ankle and foot: from incidental finding to inductor of pathology. Part I: ankle and hindfoot. Insights Imaging 2019; 10 (01) 74
  • 4 Aparisi Gómez MP, Aparisi F, Bartoloni A. et al. Anatomical variation in the ankle and foot: from incidental finding to inductor of pathology. Part II: midfoot and forefoot. Insights Imaging 2019; 10 (01) 69
  • 5 Bydder M, Rahal A, Fullerton GD, Bydder GM. The magic angle effect: a source of artifact, determinant of image contrast, and technique for imaging. J Magn Reson Imaging 2007; 25 (02) 290-300
  • 6 Richardson ML, Amini B, Richards TL. Some new angles on the magic angle: what MSK radiologists know and don't know about this phenomenon. Skeletal Radiol 2018; 47 (12) 1673-1681
  • 7 Gyftopoulos S, Bencardino JT. Normal variants and pitfalls in MR imaging of the ankle and foot. Magn Reson Imaging Clin N Am 2010; 18 (04) 691-705
  • 8 Ieong E, Rafferty M, Khanna M, Walker M, Rosenfeld P. Use of fat-suppressed t2-weighted MRI images to reduce the magic angle effect in peroneal tendons. Foot Ankle Spec 2019; 12 (06) 513-517
  • 9 Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. AJR Am J Roentgenol 2011; 197 (03) 547-555
  • 10 Noda C, Ambale Venkatesh B, Wagner JD, Kato Y, Ortman JM, Lima JAC. Primer on commonly occurring MRI artifacts and how to overcome them. Radiographics 2022; 42 (03) E102-E103
  • 11 Lee EM, Ibrahim EH, Dudek N. et al. Improving MR image quality in patients with metallic implants. Radiographics 2021; 41 (04) E126-E137
  • 12 Shabshin N, Schweitzer ME, Morrison WB, Carrino JA, Keller MS, Grissom LE. High-signal T2 changes of the bone marrow of the foot and ankle in children: red marrow or traumatic changes?. Pediatr Radiol 2006; 36 (07) 670-676
  • 13 Pal CR, Tasker AD, Ostlere SJ, Watson MS. Heterogeneous signal in bone marrow on MRI of children's feet: a normal finding?. Skeletal Radiol 1999; 28 (05) 274-278
  • 14 Ricci C, Cova M, Kang YS. et al. Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 1990; 177 (01) 83-88
  • 15 De Houwer H, Van Beek N, Prinsen S, Van Riet A, De Roeck J, Verfaillie S. Bone marrow oedema syndrome of the foot and ankle in a paediatric population: a retrospective case series with serial MRI evaluation. J Child Orthop 2020; 14 (05) 440-450
  • 16 Miron MC, Grimard G. Ultrasound evaluation of foot deformities in infants. Pediatr Radiol 2016; 46 (02) 193-209 ;, quiz 190–192
  • 17 Aparisi Gómez MP, Watkin S, Perry D, Simoni P, Trisolino G, Bazzocchi A. Anatomical considerations of embryology and development of the musculoskeletal system: basic notions for musculoskeletal radiologists. Semin Musculoskelet Radiol 2021; 25 (01) 3-21
  • 18 Cady R, Hennessey TA, Schwend RM. Diagnosis and treatment of idiopathic congenital clubfoot. Pediatrics 2022; 149 (02) e2021055555
  • 19 Kamath SU, Austine J. Radiological assessment of congenital talipes equinovarus (clubfoot): Is it worthwhile?. Foot 2018; 37: 91-94
  • 20 Thapa MM, Pruthi S, Chew FS. Radiographic assessment of pediatric foot alignment: review. AJR Am J Roentgenol 2010; 194 (6, Suppl:) S51-S58
  • 21 Eidelman M, Kotlarsky P, Herzenberg JE. Treatment of relapsed, residual and neglected clubfoot: adjunctive surgery. J Child Orthop 2019; 13 (03) 293-303
  • 22 Berg EE. A reappraisal of metatarsus adductus and skewfoot. J Bone Joint Surg Am 1986; 68 (08) 1185-1196
  • 23 Rampal V, Giuliano F. Forefoot malformations, deformities and other congenital defects in children. Orthop Traumatol Surg Res 2020; 106 (1S): S115-S123
  • 24 Reginelli A, Russo A, Turrizziani F. et al. Imaging of pediatric foot disorders. Acta Biomed 2018; 89 (1-S): 34-47
  • 25 Wirth T. Congenital vertical talus. Foot Ankle Clin 2021; 26 (04) 903-913
  • 26 Newman JS, Newberg AH. Congenital tarsal coalition: multimodality evaluation with emphasis on CT and MR imaging. Radiographics 2000; 20 (02) 321-332 , quiz 526–527, 532
  • 27 Alaia EF, Rosenberg ZS, Bencardino JT, Ciavarra GA, Rossi I, Petchprapa CN. Tarsal tunnel disease and talocalcaneal coalition: MRI features. Skeletal Radiol 2016; 45 (11) 1507-1514
  • 28 Morley AJ. Knock-knee in children. BMJ 1957; 2 (5051): 976-979
  • 29 Staheli LT, Chew DE, Corbett M. The longitudinal arch. A survey of eight hundred and eighty-two feet in normal children and adults. J Bone Joint Surg Am 1987; 69 (03) 426-428
  • 30 Vanderwilde R, Staheli LT, Chew DE, Malagon V. Measurements on radiographs of the foot in normal infants and children. J Bone Joint Surg Am 1988; 70 (03) 407-415
  • 31 Beath T. National Research Council of Canada. Associate Committee on Army Medical Research. Army Foot Survey: An Investigation of Foot Ailments in Canadian Soldiers. Ottawa, ON: National Research Council of Canada; 1947
  • 32 Bleck EE, Berzins UJ. Conservative management of pes valgus with plantar flexed talus, flexible. Clin Orthop Relat Res 1977; (122) 85-94
  • 33 Mosca VS. Flexible flatfoot in children and adolescents. J Child Orthop 2010; 4 (02) 107-121
  • 34 Bouchard M, Mosca VS. Flatfoot deformity in children and adolescents: surgical indications and management. J Am Acad Orthop Surg 2014; 22 (10) 623-632
  • 35 Bauer K, Mosca VS, Zionts LE. What's new in pediatric flatfoot?. J Pediatr Orthop 2016; 36 (08) 865-869
  • 36 Bina S, Pacey V, Barnes EH, Burns J, Gray K. Interventions for congenital talipes equinovarus (clubfoot). Cochrane Database Syst Rev 2020; 5 (05) CD008602
  • 37 Aparisi Gómez MP, Trisolino G, Sangiorgi L, Guglielmi G, Bazzocchi A. Imaging of congenital skeletal disorders. Semin Musculoskelet Radiol 2021; 25 (01) 22-38
  • 38 Buda R, Pagliazzi G, Castagnini F, Cavallo M, Giannini S. Treatment of osteochondritis dissecans of the talus in skeletally immature population: a critical analysis of the available evidence. Foot Ankle Spec 2016; 9 (03) 265-270
  • 39 Bae S, Lee HK, Lee K. et al. Comparison of arthroscopic and magnetic resonance imaging findings in osteochondral lesions of the talus. Foot Ankle Int 2012; 33 (12) 1058-1062
  • 40 Hefti F, Beguiristain J, Krauspe R. et al. Osteochondritis dissecans: a multicenter study of the European Pediatric Orthopedic Society. J Pediatr Orthop B 1999; 8 (04) 231-245
  • 41 Heywood CS, Benke MT, Brindle K, Fine KM. Correlation of magnetic resonance imaging to arthroscopic findings of stability in juvenile osteochondritis dissecans. Arthroscopy 2011; 27 (02) 194-199
  • 42 Griffith JF, Lau DTY, Yeung DKW, Wong MWN. High-resolution MR imaging of talar osteochondral lesions with new classification. Skeletal Radiol 2012; 41 (04) 387-399
  • 43 Dekker TJ, Dekker PK, Tainter DM, Easley ME, Adams SB. Treatment of osteochondral lesions of the talus: a critical analysis review. JBJS Rev 2017; 5 (03) e4
  • 44 Kramer DE, Glotzbecker MP, Shore BJ. et al. Results of surgical management of osteochondritis dissecans of the ankle in the pediatric and adolescent population. J Pediatr Orthop 2015; 35 (07) 725-733
  • 45 Bruns J, Rosenbach B. Osteochondrosis dissecans of the talus. Comparison of results of surgical treatment in adolescents and adults. Arch Orthop Trauma Surg 1992; 112 (01) 23-27
  • 46 Perumal V, Wall E, Babekir N. Juvenile osteochondritis dissecans of the talus. J Pediatr Orthop 2007; 27 (07) 821-825
  • 47 Carlson MJ, Antkowiak TT, Larsen NJ, Applegate GR, Ferkel RD. Arthroscopic treatment of osteochondral lesions of the talus in a pediatric population: a minimum 2-year follow-up. Am J Sports Med 2020; 48 (08) 1989-1998
  • 48 Mayr J, Peicha G, Grechenig W, Hammerl R, Weiglein A, Sorantin E. Fractures and dislocations of the foot in children. Clin Podiatr Med Surg 2006; 23 (01) 167-189 , ix
  • 49 Owen RJ, Hickey FG, Finlay DB. A study of metatarsal fractures in children. Injury 1995; 26 (08) 537-538
  • 50 Rammelt S, Godoy-Santos AL, Schneiders W, Fitze G, Zwipp H. Foot and ankle fractures during childhood: review of the literature and scientific evidence for appropriate treatment. Rev Bras Ortop 2016; 51 (06) 630-639
  • 51 Leary JT, Handling M, Talerico M, Yong L, Bowe JA. Physeal fractures of the distal tibia: predictive factors of premature physeal closure and growth arrest. J Pediatr Orthop 2009; 29 (04) 356-361
  • 52 Ertl JP, Barrack RL, Alexander AH, VanBuecken K. Triplane fracture of the distal tibial epiphysis. Long-term follow-up. J Bone Joint Surg Am 1988; 70 (07) 967-976
  • 53 Schurz M, Binder H, Platzer P, Schulz M, Hajdu S, Vécsei V. Physeal injuries of the distal tibia: long-term results in 376 patients. Int Orthop 2010; 34 (04) 547-552
  • 54 Lim RK, Gerson B, Seabrook JA, Reardon J, Poonai N. Pediatric forefoot fractures: assessment of fracture patterns and predictors of complicated outcome. Pediatr Emerg Care 2018; 34 (04) 233-236
  • 55 Sakaki MH, Saito GH, de Oliveira RG. et al. Epidemiological study on talus fractures. Rev Bras Ortop 2014; 49 (04) 334-339
  • 56 Cronier P, Talha A, Massin P. Central talar fractures—therapeutic considerations. Injury 2004; 35 (Suppl 2): SB10-SB22
  • 57 Smith JT, Curtis TA, Spencer S, Kasser JR, Mahan ST. Complications of talus fractures in children. J Pediatr Orthop 2010; 30 (08) 779-784
  • 58 Inokuchi S, Usami N, Hiraishi E, Hashimoto T. Calcaneal fractures in children. J Pediatr Orthop 1998; 18 (04) 469-474
  • 59 Schmidt TL, Weiner DS. Calcaneal fractures in children. An evaluation of the nature of the injury in 56 children. Clin Orthop Relat Res 1982; (171) 150-155
  • 60 Schneidmueller D, Dietz HG, Kraus R, Marzi I. Calcaneal fractures in childhood: a retrospective survey and literature review. [in German]. Unfallchirurg 2007; 110 (11) 939-945
  • 61 Marsh JS, Daigneault JP, Polzhofer GK. Treatment of ankle instability in children and adolescents with a modified Chrisman-Snook repair: a clinical and patient-based outcome study. J Pediatr Orthop 2006; 26 (01) 94-99
  • 62 Peltola H, Pääkkönen M. Acute osteomyelitis in children. N Engl J Med 2014; 370 (04) 352-360
  • 63 Bartoloni A, Aparisi Gómez MP, Cirillo M. et al. Imaging of the limping child. Eur J Radiol 2018; 109: 155-170
  • 64 Castellazzi L, Mantero M, Esposito S. Update on the management of pediatric acute osteomyelitis and septic arthritis. Int J Mol Sci 2016; 17 (06) 855
  • 65 Faville RJ. Acute hematogenous osteomyelitis of the foot and ankle in children. In: Boffeli TJ, ed. Osteomyelitis of the Foot and Ankle: Medical and Surgical Management. Cham, Switzerland: Springer International; 2015: 67-74
  • 66 Thompson RM, Gourineni P. Arthroscopic treatment of septic arthritis in very young children. J Pediatr Orthop 2017; 37 (01) e53-e57
  • 67 Nadau E, Joseph C, Haraux E, Deroussen F, Gouron R, Klein C. Clinical features and outcomes in children with bone and joint infections of the ankle or foot. Arch Pediatr 2020; 27 (08) 464-468
  • 68 Dahlin DC, Unni KK. Bone Tumors: General Aspects and Data on 8,547 cases. 4th ed. Springfield, IL: Charles C Thomas; 1986
  • 69 Buchner M, Bernd L, Zahlten-Hinguranage A, Sabo D. Bone and soft-tissue tumors of the foot and ankle. [in German]. Chirurg 2005; 76 (04) 391-397
  • 70 Caro-Domínguez P, Navarro OM. Bone tumors of the pediatric foot: imaging appearances. Pediatr Radiol 2017; 47 (06) 739-749
  • 71 Laurence N, Epelman M, Markowitz RI, Jaimes C, Jaramillo D, Chauvin NA. Osteoid osteomas: a pain in the night diagnosis. Pediatr Radiol 2012; 42 (12) 1490-1501 ; quiz 1540–1542
  • 72 Acanfora C, Grassi E, Giacobbe G. et al. Post-procedural follow-up of the interventional radiology's management of osteoid osteomas and osteoblastomas. j Clin Med 2022; 11 (07) 1987
  • 73 Bazzocchi A, Aparisi Gómez MP, Taninokuchi Tomassoni M, Napoli A, Filippiadis D, Guglielmi G. Musculoskeletal oncology and thermal ablation: the current and emerging role of interventional radiology. Skeletal Radiol 2022; November 8 (Epub ahead of print)
  • 74 Arrigoni F, Napoli A, Bazzocchi A. et al. Magnetic-resonance-guided focused ultrasound treatment of non-spinal osteoid osteoma in children: multicentre experience. Pediatr Radiol 2019; 49 (09) 1209-1216
  • 75 Fink BR, Temple HT, Chiricosta FM, Mizel MS, Murphey MD. Chondroblastoma of the foot. Foot Ankle Int 1997; 18 (04) 236-242
  • 76 Urakawa H, Tsukushi S, Hosono K. et al. Clinical factors affecting pathological fracture and healing of unicameral bone cysts. BMC Musculoskelet Disord 2014; 15: 159
  • 77 Singer AD, Datir A, Tresley J. et al. Benign and malignant tumors of the foot and ankle. Skeletal Radiol 2016; 45 (03) 287-305
  • 78 Kransdorf MJ, Murphey MD. Imaging of Soft Tissue Tumors. Philadelphia, PA: Lippincott Williams & Wilkins; 2006