Subscribe to RSS
DOI: 10.1055/s-0043-112653
Prevalence and Distribution of Diabetes Mellitus in a Maximum Care Hospital: Urgent Need for HbA1c-Screening
Publication History
received 13 April 2017
revised 13 April 2017
accepted 31 May 2017
Publication Date:
27 July 2017 (online)
Abstract
Objective Diabetes mellitus affects almost one in 10 individuals in Germany. So far, little is known about the diabetes prevalence in maximum care hospitals. We assessed the diabetes prevalence, proportion of undiagnosed cases, the effectiveness of diabetes screening in a university hospital, the consequences for hospital stay and acquired complications.
Research Design and Methods Over a 4 week period we determined HbA1c from 3 733 adult patients which were hospitalized at the university hospital of Tuebingen and had an available blood sample. Diabetes diagnosis was defined as HbA1c≥6.5% and/or previously documented diabetes diagnosis, prediabetes was defined as HbA1c≥5.7% and <6.5% without history of previous diabetes.
Results 23.68% of the patients had prediabetes and 22.15% had diabetes with a high variation between the specialised departments (range 5–43%). The rate of unknown diabetes was 3.7%, the number needed to screen was 17 in patients older than 50 years. Patients with diabetes had a prolonged hospital stay compared to the mean length of stay for their diagnosis related group (diabetes: 1.47±0.24 days; no diabetes: −0.18±0.13 days, p=0.0133). The prevalence of hospital acquired complications was higher in diabetic patients (diabetes: 197 of 630; no diabetes: 447 of 2 459, p<0.0001).
Conclusions Every fourth patient in the university hospital had diabetes and every second had either prediabetes or diabetes. It is also worthwhile to screen for unknown diabetes in patients over the age of 50. The high prevalence and negative consequences of diabetes require screening and intensified specialized diabetes treatment in hospitals.
Key words
diabetes mellitus - diabetes prevalence - length of stay - complications - number needed to screen* Andreas Fritsche and Andreas Peter contributed equally
-
References
- 1 Zimmet PZ, Magliano DJ, Herman WH. et al. Diabetes: A 21st century challenge. Lancet Diabetes Endocrinol 2014; 2: 56-64 doi:0.1016/S2213-8587(13)70112-8
- 2 Zhou B, Lu Y, Hajifathalian K. et al. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4·4 million participants. The Lancet 387: 1513-1530 doi:10.1016/S0140-6736(16)00618-8
- 3 Rathmann W, Scheidt-Nave C, Roden M. et al. Type 2 diabetes: prevalence and relevance of genetic and acquired factors for its prediction. Dtsch Arztebl Int 2013; 110: 331-337 doi:10.3238/arztebl.2013.0331
- 4 Deutscher Gesundheitsbericht Diabetes 2016 Die Bestandsaufnahme. In: diabetesDE – Deutsche Diabetes-Hilfe und Deutsche Diabetes Gesellschaft (DDG). 2016
- 5 Tamayo T, Brinks R, Hoyer A. et al. The prevalence and incidence of diabetes in Germany: An analysis of statutory health insurance data on 65 million individuals from the years 2009 and 2010. Dtsch Arztebl International 2016; 113: 177-182 doi:10.3238/arztebl.2016.0177
- 6 Koster I, Schubert I. Fortschreibung der KoDIM-Studie: Kosten des Diabetes mellitus 2000–2009 Dtsch Med Wochenschr. 2012; 137: 1013-1016 doi:10.1055/s-0032-1304891
- 7 Koster I, Huppertz E, Hauner H. et al. Costs of Diabetes Mellitus (CoDiM) in Germany, direct per-capita costs of managing hyperglycaemia and diabetes complications in 2010 compared to 2001. Exp Clin Endocrinol Diabetes 2014; 122: 510-516 doi:10.1055/s-0034-1375675
- 8 Korbel I, Spencer JD. Diabetes mellitus and infection: an evaluation of hospital utilization and management costs in the United States. J Diabetes Complications 2015; 29: 192-195 doi:10.1016/j.jdiacomp.2014.11.005
- 9 Carpenter DL, Gregg SR, Xu K. et al. Prevalence and Impact of Unknown Diabetes in the ICU. Critical care medicine 2015; 43: e541-e550 doi:10.1097/ccm.0000000000001353
- 10 Giraldez RR, Clare RM, Lopes RD. et al. Prevalence and clinical outcomes of undiagnosed diabetes mellitus and prediabetes among patients with high-risk non–ST-segment elevation acute coronary syndrome. American Heart Journal 165: 918-925.e912 doi:10.1016/j.ahj.2013.01.005
- 11 Daultrey H, Gooday C, Dhatariya K. Increased length of inpatient stay and poor clinical coding: audit of patients with diabetes. JRSM Short Rep 2011; 2: 83 doi:10.1258/shorts.2011.011100
- 12 Rousan TA, Pappy RM, Chen AY. et al. Impact of diabetes mellitus on clinical characteristics, management, and in-hospital outcomes in patients with acute myocardial infarction (from the NCDR). American Journal of Cardiology 114: 1136-1144 doi:10.1016/j.amjcard.2014.07.031
- 13 Kerner W, Bruckel J. Definition, classification and diagnosis of diabetes mellitus. Exp Clin Endocr Diab 2014; 122: 384-386 doi:10.1055/s-0034-1366278
- 14 American Diabetes A . Diagnosis and classification of diabetes mellitus. Diabetes Care 2010; 33 (Suppl. 01) S62-S69 doi:10.2337/dc10-S062
- 15 Peter A, Fritsche A, Stefan N. et al. Diagnostic value of hemoglobin a1c for type 2 diabetes mellitus in a population at risk. Exp Clin Endocrinol Diabetes 2011; 119: 234-237 doi:10.1055/s-0030-1270440
- 16 Rosella LC, Lebenbaum M, Fitzpatrick T. et al. Prevalence of prediabetes and undiagnosed diabetes in canada (2007-2011) according to fasting plasma glucose and hba1c screening criteria. Diabetes Care 2015; 38: 1299-1305 doi:10.2337/dc14-2474
- 17 O’Brien MJ, Lee JY, Carnethon MR. et al. Detecting dysglycemia using the 2015 united states preventive services task force screening criteria: A cohort analysis of community health center patients. PLoS Med 2016; 13: e1002074 doi:10.1371/journal.pmed.1002074
- 18 Institut für das Entgeltsystem im Krankenhaus GmbH (InEK) Abschlussbericht Weiterentwicklung des G-DRG-Systems für das Jahr 2014 Klassifikation, Katalog und Bewertungsrelationen Teil I: Projektbericht. In: 2013;
- 19 Cromarty J, Parikh S, Lim WK. et al. Effects of hospital-acquired conditions on length of stay for patients with diabetes. Intern Med J 2014; 44: 1109-1116 doi:10.1111/imj.12538
- 20 Puig J, Supervia A, Marquez MA. et al. Diabetes team consultation: Impact on length of stay of diabetic patients admitted to a short-stay unit. Diabetes Res Clin Pract 2007; 78: 211-216 doi:10.1016/j.diabres.2007.03.010
- 21 Kassenärztliche Bundesvereinigung. Einheitlicher Bewertungsmaßstab (EBM). Stand: 4. Quartal 2016. In. 2016;
- 22 Miller Wolman D, Kalfoglou AL, LeRoy L. Medicare Laboratory Payment Policy: Now and in the Future. National Academies Press (US) 2000 ISBN: 0-309-07266-2, doi: 10.17226/9997
- 23 Statistisches Bundesamt Durchschnittliche Verweildauer in deutschen Krankenhäusern in den Jahren 1992 bis 2015 (in Tagen) In. 2016; https://de.statista.com/statistik/daten/studie/2604/umfrage/ durchschnittliche-verweildauer-im-krankenhaus-seit-1992/
- 24 Bruns DE, Boyd JC. Few point-of-care hemoglobin A1c assay methods meet clinical needs. Clin Chem 2010; 56: 4-6 doi:10.1373/clinchem.2009.139865
- 25 Mosca A, Paleari R, Carobene A. et al. Performance of glycated hemoglobin (HbA(1c)) methods evaluated with EQAS studies using fresh blood samples: Still space for improvements. Clin Chim Acta 2015; 451: 305-309 doi:10.1016/j.cca.2015.10.014
- 26 Sacks DB. A1C versus glucose testing: a comparison. Diabetes Care 2011; 34: 518-523 doi:10.2337/dc10-1546
- 27 Little RR, Rohlfing CL, Sacks DB. et al. Status of hemoglobin A1c measurement and goals for improvement: from chaos to order for improving diabetes care. Clin Chem 2011; 57: 205-214 doi:10.1373/clinchem.2010.148841
- 28 Jackson SL, Safo SE, Staimez LR. et al. Glucose challenge test screening for prediabetes and early diabetes. Diabet Med 2016; DOI: 10.1111/dme.13270.
- 29 Mann DM, Carson AP, Shimbo D. et al. Impact of A1C screening criterion on the diagnosis of pre-diabetes among U.S. adults. Diabetes Care 2010; 33: 2190-2195 doi:10.2337/dc10-0752
- 30 Olson DE, Rhee MK, Herrick K. et al. Screening for diabetes and pre-diabetes with proposed A1C-based diagnostic criteria. Diabetes Care 2010; 33: 2184-2189 doi:10.2337/dc10-0433
- 31 Mostafa SA, Khunti K, Srinivasan BT. et al. The potential impact and optimal cut-points of using glycated haemoglobin, HbA1c, to detect people with impaired glucose regulation in a UK multi-ethnic cohort. Diabetes Res Clin Pract 2010; 90: 100-108 doi:10.1016/j.diabres.2010.06.008