Aktuelle Urol 2020; 51(06): 582-592
DOI: 10.1055/s-0043-115426
Übersicht
Thieme. All rights reserved. (2020) Georg Thieme Verlag KG

Bedeutung der Androgenrezeptor-Spleißvariante AR-V7 für Prognose und Therapie des fortgeschrittenen Prostatakarzinoms

The impact of the androgen receptor splice variant AR-V7 on the prognosis and treatment of advanced prostate cancer
P. Thelen
1   Klinik für Urologie, Universitätsmedizin Göttingen, 37099 Göttingen
,
H. Taubert
2   Urologische und Kinderurologische Klinik, Universitätsklinikum Erlangen, 91054 Erlangen
,
S. Duensing
3   Urologische Klinik, Sektion für Molekulare Uro-Onkologie, Universitätsklinikum Heidelberg, 69120 Heidelberg
,
G. Kristiansen
4   Institut für Pathologie, Universitätsklinikum Bonn, 53127 Bonn
,
A. S. Merseburger
5   Klinik für Urologie, Universitätsklinikum Schleswig-Holstein – Campus Lübeck, 23538 Lübeck
,
M. V. Cronauer
5   Klinik für Urologie, Universitätsklinikum Schleswig-Holstein – Campus Lübeck, 23538 Lübeck
› Author Affiliations
Further Information

Publication History

Publication Date:
25 January 2018 (online)

Zusammenfassung

Ein kürzlich entdeckter Mechanismus, welcher es Prostatakarzinomzellen ermöglicht, die Wirkung endokriner Therapien zu umgehen, ist die Synthese C-terminal verkürzter, konstitutiv aktiver Androgenrezeptor(AR)-Spleißvarianten (AR-V). Ohne eine funktionsfähige C-terminal gelegene Hormon- bzw. Ligandenbindedomäne sind viele AR-Vs unempfindlich gegenüber Therapien, welche sich gegen die Androgen-/Androgenrezeptor-Signalachse richten. Erste Studien weisen darauf hin, dass AR-V7, die häufigste AR-V-Form, ein vielversprechender prädiktiver Tumormarker sowie relevanter Selektionsmarker bei der Behandlung des fortgeschrittenen Prostatakarzinoms ist. Die vorliegende Übersicht skizziert jüngste Fortschritte bei der AR-V7 Diagnostik und präsentiert einen Überblick über derzeitig durchgeführte zielgerichtete AR-V7 Therapien.

Abstract

A recently discovered mechanism enabling prostate cancer cells to escape the effects of endocrine therapies consists in the synthesis of C-terminally truncated, constitutively active androgen receptor (AR) splice variants (AR-V). Devoid of a functional C-terminal hormone/ligand binding domain, various AR-Vs are insensitive to therapies targeting the androgen/AR signalling axis. Preliminary studies suggest that AR-V7, the most common AR-V, is a promising predictive tumour marker and a relevant selection marker for the treatment of advanced prostate cancer. This review critically outlines recent advances in AR-V7 diagnostics and presents an overview of current AR-V7 targeted therapies.

 
  • Literaturverzeichnis

  • 1 Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer 2001; 1: 34-45
  • 2 Perner S, Cronauer MV, Schrader AJ. et al. Adaptive responses of androgen receptor signaling in castration-resistant prostate cancer. Oncotarget 2015; 6: 35542-35555
  • 3 Jentzmik F, Azoitei A, Zengerling F. et al. Androgen receptor aberrations in the era of abiraterone and enzalutamide. World J Urol 2016; 34: 297-303
  • 4 Penning TM. Androgen biosynthesis in castration-resistant prostate cancer. Endocr Relat Cancer 2014; 21: T67-78
  • 5 Dehm SM, Schmidt LJ, Heemers HV. et al. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 2008; 68: 5469-5477
  • 6 Sun S, Sprenger CC, Vessella RL. et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 2010; 120: 2715-2730
  • 7 Azoitei A, Merseburger AS, Godau B. et al. C-terminally truncated constitutively active androgen receptor variants and their biologic and clinical significance in castration-resistant prostate cancer. J Steroid Biochem Mol Biol 2017; 166: 38-44
  • 8 Hu R, Lu C, Mostaghel EA. et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 2012; 72: 3457-3462
  • 9 Li Y, Chan SC, Brand LJ. et al. Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res 2013; 73: 483-499
  • 10 Yu Z, Chen S, Sowalsky AG. et al. Rapid induction of androgen receptor splice variants by androgen deprivation in prostate cancer. Clin Cancer Res 2014; 20: 1590-1600
  • 11 Antonarakis ES, Lu C, Wang H. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014; 371: 1028-1038
  • 12 Saporita AJ, Zhang Q, Navai N. et al. Identification and characterization of a ligand-regulated nuclear export signal in androgen receptor. J Biol Chem 2003; 278: 41998-42005
  • 13 Clinckemalie L, Vanderschueren D, Boonen S. et al. The hinge region in androgen receptor control. Mol Cell Endocrinol 2012; 358: 1-8
  • 14 van Royen ME, van Cappellen WA, de Vos C. et al. Stepwise androgen receptor dimerization. J Cell Sci 2012; 125: 1970-1979
  • 15 Jenster G, van der Korput HA, Vroonhoven C. et al. Domains of the human androgen receptor involved in steroid binding transcriptional activation, and subcellular localization. Mol Endocrinol 1991; 5: 1396-1404
  • 16 Céraline J, Cruchant MD, Erdmann E. et al. Constitutive activation of the androgen receptor by a point mutation in the hinge region: a new mechanism for androgen-independent growth in prostate cancer. Int J Cancer 2004; 108: 152-157
  • 17 Han D, Gao S, Valencia K. et al. A novel nonsense mutation in androgen receptor confers resistance to CYP17 inhibitor treatment in prostate cancer. Oncotarget 2017; 8: 6796-6808
  • 18 Lu J, Van der Steen T, Tindall DJ. Are androgen receptor variants a substitutefor the full-length receptor?. Nat Rev Urol 2015; 12: 137-144
  • 19 Chan SC, Li Y, Dehm SM. Androgen receptor splice variants activate androgen receptor target genes and support aberrant prostate cancer cell growth independent of canonical androgen receptor nuclear localization signal. J Biol Chem 2012; 287: 19736-19749
  • 20 Watson PA, Chen YF, Balbas MD. et al. Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci USA 2010; 107: 16759-16765
  • 21 Cao B, Qi Y, Zhang G. et al. Androgen receptor splice variants activating the full-length receptor in mediating resistance to androgen-directed therapy. Oncotarget 2014; 5: 1646-1656
  • 22 Xu D, Zhan Y, Qi Y. et al. Androgen receptor splice variants dimerize to transactivate target genes. Cancer Res 2015; 75: 3663-3671
  • 23 Streicher W, Zengerling F, Laschak M. et al. AR-Q640X, a model to study the effects of constitutively active C-terminally truncated AR variants in prostate cancer cells. World J Urol 2012; 30: 333-339
  • 24 Hu R, Isaacs WB, Luo J. et al. A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities. Prostate 2001; 71: 1656-1667
  • 25 Cottard F, Asmane I, Erdmann E. et al. Constitutively active androgen receptor variants upregulate expression of mesenchymal markers in prostate cancer cells. PLoS One 2013; 8: e63466
  • 26 Kong D, Sethi S, Li Y. et al. Androgen receptor splice variants contribute to prostate cancer aggressiveness through induction of EMT and expression of stem cell marker genes. Prostate 2015; 75: 161-174
  • 27 Shafi AA, Putluri V, Arnold JM. et al. Differential regulation of metabolic pathways by androgen receptor (AR) and its constitutively active splice variant, AR-V7, in prostate cancer cells. Oncotarget 2015; 6: 31997-32012
  • 28 Hu R, Dunn TA, Wei S. et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 2009; 69: 16-22
  • 29 Guo Z, Yang X, Sun F. et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 2009; 69: 2305-2313
  • 30 Hörnberg E, Ylitalo EB, Crnalic S. et al. Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS One 2011; 6: e19059
  • 31 Qu Y, Dai B, Ye D. et al. Constitutively active AR-V7 plays an essential role in the development and progression of castration-resistant prostate cancer. Sci. Rep 2015; 5: 7654
  • 32 Antonarakis ES, Lu C, Luber B. et al. Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol 2015; 1: 582-591
  • 33 Nakazawa M, Lu C, Chen Y. et al. Serial blood-based analysis of AR-V7 in men with advanced prostate cancer. Ann Oncol 2015; 26: 1859-1865
  • 34 Del Re M, Biasco E, Crucitta S. et al. The detection of androgen receptor splice variant 7 in plasma-derived exosomal RNAs strongly predicts resistance to hormonal therapy in metastatic prostate cancer patients. Eur Urol 2017; 71: 680-687
  • 35 Todenhöfer T, Azad A, Stewart C. et al. AR-V7 transcripts in whole blood RNA of patients with metastatic castration resistant prostate cancer correlate with response to abiraterone acetate. J Urol 2017; 197: 135-142
  • 36 Takeuchi T, Okuno Y, Hattori-Kato M. et al. Detection of AR-V7 mRNA in whole blood may not predict the effectiveness of novel endocrine drugs for castration-resistant prostate cancer. Res Rep Urol 2016; 8: 21-25
  • 37 Ma Y, Luk A, Young FP. et al. Droplet digital PCR based androgen receptor variant 7 (AR-V7) detection from prostate cancer patient blood biopsies. Int J Mol Sci 2016; 17: 1264
  • 38 Qu F, Xie W, Nakabayashi M. et al. Association of AR-V7 and prostate-specific antigen RNA levels in blood with efficacy of abiraterone acetate and enzalutamide treatment in men with prostate cancer. Clin Cancer Res 2017; 23: 726-734
  • 39 Steinestel J, Luedeke M, Arndt A. et al. Detecting predictive androgen receptor modifications in circulating prostate cancer cells. Oncotarget 2015; DOI: 10.18632/oncotarget.3925.
  • 40 Bernemann C, Schnoeller TJ, Luedeke M. et al. Expression of AR-V7 in circulating tumour cells does not preclude response to next generation androgen deprivation therapy in patients with castration resistant prostate cancer. Eur Urol 2017; 71: 1-3
  • 41 Robinson D, Van Allen EM, Wu YM. et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015; 161: 1215-1228
  • 42 Guedes LB, Morais CL, Almutairi F. et al. Analytic validation of RNA in situ hybridization (RISH) for AR and AR-V7 expression in human prostate cancer. Clin Cancer Res 2016; 22: 4651-4663
  • 43 Onstenk W, Sieuwerts AM, Kraan J. et al. Efficacy of cabazitaxel in castration-resistant prostate cancer is independent of the presence of AR-V7 in circulating tumor cells. Eur Urol 2015; 68: 939-945
  • 44 Scher HI, Lu D, Schreiber NA. et al. Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol 2016; 2: 1441-1449
  • 45 Scher HI, Graf RP, Schreiber NA. et al. Nuclear-specific AR-V7 protein localization is necessary to guide treatment selection in metastatic castration-resistant prostate cancer. Eur Urol 2017; 71: 874-882
  • 46 Liu X, Ledet E, Li D. et al. A whole blood assay for AR-V7 and ARv567es in patients with prostate cancer. J Urol 2016; 196: 1758-1763
  • 47 Zengerling F, Streicher W, Schrader AJ. et al. Effects of sorafenib on C-terminally truncated androgen receptor variants in human prostate cancer cells. Int J Mol Sci 2012; 13: 11530-11542
  • 48 Streicher W, Luedeke M, Azoitei A. et al. Stilbene induced inhibition of androgen receptor dimerization: implications for AR and ARΔLBD-signalling in human prostate cancer cells. PLoS One 2014; 9: e98566
  • 49 Kwegyir-Afful AK, Ramalingam S, Purushottamachar P. et al. Galeterone and VNPT55 induce proteasomal degradation of AR/AR-V7, induce significant apoptosis via cytochrome C release and suppress growth of castration resistant prostate cancer xenografts in vivo. Oncotarget 2015; 6: 27440-27460
  • 50 Bastos DA, Antonarakis ES. Galeterone for the treatment of advanced prostate cancer: the evidence to date. Drug Des Devel Ther 2016; 10: 2289-2297
  • 51 Antonarakis ES, Chandhasin C, Osbourne E. et al. Targeting the N-terminal domain of the androgen receptor: a new approach for the treatment of advanced prostate cancer. Oncologist 2016; 21: 1427-1435
  • 52 Zengerling F, Azoitei A, Herweg A. et al. Inhibition of IGF-1R diminishes transcriptional activity of the androgen receptor and its constitutively active, C-terminally truncated counterparts Q640X and AR-V7. World J Urol 2016; 34: 633-639
  • 53 Ferraldeschi R, Welti J, Powers MV. et al. Second-generation HSP90 inhibitor Onalespib blocks mRNA splicing of androgen receptor variant 7 in prostate cancer cells. Cancer Res 2016; 76: 2731-2742
  • 54 Liu C, Lou W, Zhu Y. et al. Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer. Clin Cancer Res 2014; 20: 3198-3210
  • 55 Gillis JL, Selth LA, Centenera MM. et al. Constitutively-active androgen receptor variants function independently of the HSP90 chaperone but do not confer resistance to HSP90 inhibitors. Oncotarget 2013; 4: 691-704
  • 56 Schweizer MT, Antonarakis ES, Wang H. et al. Effect of bipolar androgen therapy for asymptomatic men with castration-resistant prostate cancer: results from a pilot clinical study. Sci Transl Med 2015; 7: 269ra2
  • 57 Schweizer MT, Antonarakis ES, Denmeade SR. Bipolar androgen therapy: a paradoxical approach for the treatment of castration-resistant prostate cancer. Eur Urol 2017; 72: 323-325
  • 58 Huggins C. Two principles in endocrine therapy of cancers: hormone deprival and hormone interference. Cancer Res 1965; 25: 1163-1167
  • 59 Nakata D, Nakayama K, Masaki T. et al. Growth inhibition by testosterone in an androgen receptor splice variant-driven prostate cancer model. Prostate 2016; 76: 1536-1545
  • 60 Gorges TM, Kuske A, Röck K. et al. Accession of tumor heterogeneity by multiplex transcriptome profiling of single circulating tumor cells. Clin Chem 2016; 62: 1504-1515