Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2024; 35(09): 989-992
DOI: 10.1055/s-0043-1763652
DOI: 10.1055/s-0043-1763652
cluster
Chemical Synthesis and Catalysis in Germany
Chiral Bifunctional NHC–Guanidine Ligands for Asymmetric Hydrogenation
Abstract
We report the synthesis of chiral N-heterocyclic carbene/guanidine bifunctional ligands from readily available amino alcohols. The resulting chiral bifunctional copper(I) complexes are active catalysts in an asymmetric hydrogenation of ketones. We show that the chiral linker unit can be employed for the transfer of stereoinformation.
Key words
N-heterocyclic carbenes - guanidines - bifunctional catalysts - hydrogenation - asymmetric catalysis - copper catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1763652.
- Supporting Information
Publication History
Received: 29 September 2023
Accepted after revision: 13 November 2023
Article published online:
14 December 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Afewerki S, Córdova A. Chem. Rev. 2016; 116: 13512
- 1b Chen D.-F, Han Z.-Y, Zhou X.-L, Gong L.-Z. Acc. Chem. Res. 2014; 47: 2365
- 1c Du Z, Shao Z. Chem. Soc. Rev. 2013; 42: 1337
- 1d Wasilke J.-C, Obrey SJ, Baker RT, Bazan GC. Chem. Rev. 2005; 105: 1001
- 1e Zhong C, Shi X. Eur. J. Org. Chem. 2010; 2010: 2999
- 1f Allen AE, MacMillan DW. C. Chem. Sci. 2012; 3: 633
- 1g Deng Y, Kumar S, Wang H. Chem. Commun. 2014; 50: 4272
- 1h Dong X.-Q, Zhao Q, Li P, Chen C, Zhang X. Org. Chem. Front. 2015; 2: 1425
- 1i Lohr TL, Marks TJ. Nat. Chem. 2015; 7: 477
- 2a Ibrahem I, Córdova A. Angew. Chem. Int. Ed. 2006; 45: 1952
- 2b Nickerson DM, Mattson AE. Chem. Eur. J. 2012; 18: 8310
- 2c Zhao Q, Li S, Huang K, Wang R, Zhang X. Org. Lett. 2013; 15: 4014
- 2d Zhao Q, Wen J, Tan R, Huang K, Metola P, Wang R, Anslyn EV, Zhang X. Angew. Chem. Int. Ed. 2014; 53: 8467
- 2e Wen J, Fan X, Tan R, Chien H.-C, Zhou Q, Chung LW, Zhang X. Org. Lett. 2018; 20: 2143
- 3a Davis HJ, Phipps RJ. Chem. Sci. 2017; 8: 864
- 3b Kuninobu Y, Ida H, Nishi M, Kanai M. Nat. Chem. 2015; 7: 712
- 3c Bai S.-T, Bheeter CB, Reek JN. H. Angew. Chem. Int. Ed. 2019; 58: 13039
- 3d Genov GR, Douthwaite JL, Lahdenperä AS. K, Gibson DC, Phipps RJ. Science 2020; 367: 1246
- 3e Fanourakis A, Docherty PJ, Chuentragool P, Phipps RJ. ACS Catal. 2020; 10: 10672
- 3f Rawat VK, Higashida K, Sawamura M. Adv. Synth. Catal. 2021; 363: 1631
- 4a Thiel NO, Pape F, Teichert JF. In Homogeneous Hydrogenation with Non-Precious Catalysts, Chap. 4. Teichert JF. Wiley-VCH; Weinheim: 2019: 87
- 4b Zimmermann BM, Kobosil SC. K, Teichert JF. Chem. Commun. 2019; 55: 2293
- 5a Jordan AJ, Lalic G, Sadighi JP. Chem. Rev. 2016; 116: 8318
- 5b Deutsch C, Krause N, Lipshutz BH. Chem. Rev. 2008; 108: 2916
- 5c Rendler S, Oestreich M. Angew. Chem. Int. Ed. 2007; 46: 498
- 6 Zimmermann BM, Tran Ngoc T, Tzaras D.-I, Kaicharla T, Teichert JF. J. Am. Chem. Soc. 2021; 143: 16865
- 7a Pape F, Thiel NO, Teichert JF. Chem. Eur. J. 2015; 21: 15934
- 7b Thiel NO, Teichert JF. Org. Biomol. Chem. 2016; 14: 10660
- 7c Pape F, Teichert JF. Synthesis 2017; 49: 2470
- 7d Thiel NO, Kemper S, Teichert JF. Tetrahedron 2017; 73: 5023
- 7e Brechmann LT, Kaewmee B, Teichert JF. ACS Catal. 2023; 13: 12634
- 8a Kobayashi Y, Takemoto Y. Top. Heterocycl. Chem. 2015; 50: 71
- 8b Concellón C, Del Amo V. Top. Heterocycl. Chem. 2015; 50: 1
- 9a Thongpaen J, Manguin R, Baslé O. Angew. Chem. Int. Ed. 2020; 59: 10242
- 9b Janssen-Müller D, Schlepphorst C, Glorius F. Chem. Soc. Rev. 2017; 46: 4845
- 9c Wang F, Liu L.-j, Wang W, Li S, Shi M. Coord. Chem. Rev. 2012; 256: 804
- 10a Nájera C, Yus M. Top. Heterocycl. Chem. 2015; 50: 95
- 10b Terada M, Ube H, Yaguchi Y. J. Am. Chem. Soc. 2006; 128: 1454
- 11a Pape F, Teichert JF. Eur. J. Org. Chem. 2017; 4206
- 11b Khan RK. M, Zhugralin AR, Torker S, O’Brien RV, Lombardi PJ, Hoveyda AH. J. Am. Chem. Soc. 2012; 134: 12438
- 11c Khan RK. M, O’Brien RV, Torker S, Li B, Hoveyda AH. J. Am. Chem. Soc. 2012; 134: 12774
- 12 Wei Y, Lu L.-Q, Li T.-R, Feng B, Wang Q, Xiao W.-J, Alper H. Angew. Chem. Int. Ed. 2016; 55: 2200
- 13 Guo R, Lu S, Chen X, Tsang C.-W, Jia W, Sui-Seng C, Amoroso D, Abdur-Rashid K. J. Org. Chem. 2010; 75: 937
- 14 Wan KY, Roelfes F, Lough AJ, Hahn FE, Morris RH. Organometallics 2018; 37: 491
- 15 Jiang Z, Toffano M, Vo-Thanh G, Bournaud C. ChemCatChem 2021; 13: 712
- 16a Clavier H, Coutable L, Toupet L, Guillemin J.-C, Mauduit M. J. Organomet. Chem. 2005; 690: 5237
- 16b Martin D, Kehrli S, d’Augustin M, Clavier H, Mauduit M, Alexakis A. J. Am. Chem. Soc. 2006; 128: 8416
- 16c Kehrli S, Martin D, Rix D, Mauduit M, Alexakis A. Chem. Eur. J. 2010; 16: 9890
- 16d Jahier-Diallo C, Morin MS. T, Queval P, Rouen M, Artur I, Querard P, Toupet L, Crévisy C, Baslé O, Mauduit M. Chem. Eur. J. 2015; 21: 993
- 16e Pape F, Thiel NO, Teichert JF. Chem. Eur. J. 2015; 21: 15934
- 16f Pape F, Teichert JF. Synthesis 2017; 49: 2470
- 17 Ligand Precursor 6 Brown solid; yield: 312 mg (63%). 1H NMR (600 MHz, CDCl3): δ = 9.15 (s, 1 H, H-14), 8.40 (s, 1 H, H-15)*, 7.39–7.34 (m, 4 H, H-6, H-11), 7.21–7.19 (m, 7 H, H-16*, H-7, H-8, H-12, H-13), 7.02 (s, 1 H, H-20), 6.98 (s, 1 H, H-20′), 6.92 (d, 3 J N–Ha,4 = 8.4 Hz, 1 H, N–Ha), 6.36 (d, 3 J 9,4 = 11.1 Hz, 1 H, H-9), 5.99 (br s, 1 H, N–Hb), 5.90 (dd, 3 J 4,9 = 11.1 Hz, 3 J 4,N–Ha= 8.2 Hz, 1 H, H-4), 3.77 (m, 2 H, H-2), 2.33 (s, 3 H, H-22), 2.05 (s, 3 H, H-19), 1.88 (s, 3 H, H-19′), 1.20 (d, 3 J 1,2 = 6.6 Hz, 6 H, H-1), 1.10 (d, 3 J 1,2 = 6.4 Hz, 6 H, H-1′). 13C NMR (151 MHz, CDCl3): δ = 153.9 (C-3), 141.9 (C-21), 136.6 (C-14), 135.2 (C-10), 134.5 (C-18), 133.9 (C-18′), 133.7 (C-5), 130.5 (C-17), 130.2 (C-20′), 130.0 (C-20), 129.9 (Ar-C), 129.4 (Ar-C), 129.3 (Ar-C), 127.9 (Ar-C), 127.8 (Ar-C), 123.9 (C-16)*, 123.3 (C-15)*, 68.1 (C-9), 59.1 (C-4), 46.0 (C-2), 23.2 (C-1′), 22.1 (C-1), 21.2 (C-22), 17.1 (C-19), 17.0 (C-19′). 19F NMR (471 MHz, CDCl3): δ = –71.7 (d, 1 J F,P = 713.2 Hz). 31P NMR (202 MHz, CDCl3): δ = –143.9 (sept, 1 J P,F = 713.2 Hz). HRMS (ESI): m/z [M – PF6]+ calcd for C33H42N5: 508.3435; found: 508.3435.
- 18 Ligand Precursor 7 Yellow solid; yield: 178 mg (70%). 1H NMR (600 MHz, CDCl3): δ = 8.84 (s, 1 H, H-8), 8.13 (app t, 3 J = 1.6 Hz, 1 H, H-9)*, 7.24 (app t, 3 J = 1.6 Hz, 1 H, H-10)*, 7.04 (s, 2 H, H-14, H-14′), 5.71 (br s, 1 H, N–Ha), 4.91 (dd, 3 J 5,4b= 10.8 Hz, 3 J 5,4a =3.0 Hz, 1 H, H-5), 4.05 (m, 1 H, H-4a), 3.87 (d, 3 J 4b,5 = 11.2 Hz, 1 H, H-4b), 4.03–3.58 (m, 3 H, N–Hb, H-1), 2.36 (s, 3 H, H-16), 2.03 (s, 3 H, H-13), 2.00 (s, 3 H, H-13′), 1.33 (d, 3 J 2,1 = 6.3 Hz, 6 H, H-2), 1.24 (d, 3 J 2′,1= 6.3 Hz, 6 H, H-2′), 1.09 (s, 9 H, H-7). 13C NMR (151 MHz, CDCl3): δ = 153.4 (C-3), 141.9 (C-15), 137.5 (C-8), 134.2 (C-12), 133.8 (C-12′) 130.3 (C-14), 130.2 (C-14′), 130.1 (C-11), 124.1 (C-9)*, 121.4 (C-10)*, 68.7 (C-5), 45.2 (C-1), 41.5 (C-4), 34.7 (C-6), 26.4 (C-7), 22.2 (C-2), 22.0 (C-2′), 21.2 (C-16), 17.3 (C-13), 17.0 (C-13′). 19F NMR (471 MHz, CDCl3): δ = –71.7 (d, 1 J F,P = 714.2 Hz). 31P NMR (202 MHz, CDCl3): δ = –144.2 (sept, 1 J P,F = 714.2 Hz). HRMS (ESI): m/z [M – PF6]+ calcd for C25H42N5: 412.3435; found: 412.3132.
- 19 (1S)-1-Phenylethanol (16): Typical Procedure for Asymmetric Hydrogenation By following the reported procedure,6 in an Ar-filled glove box, a 5 mL vial equipped with a stirrer bar was charged with CuCl (1.98 mg, 2.00 μmol, 10.0 mol%), the appropriate ligand precursor 6 or 7 (2.4 μmol, 12 mol%), and t-BuONa (24.9 mg, 0.26 mmol, 1.30 equiv). The vial was capped inside the glovebox and then transferred outside. The solids were dissolved in THF (1.00 mL), and the resulting mixture was stirred for 15 min at 40 °C. 15-Crown-5 (25.0 μL, 0.260 mmol, 1.30 equiv) was added to the mixture. Acetophenone (15; 24.0 mg, 0.20 mmol, 1.00 equiv) was dissolved in THF (1.00 mL) and the solution was transferred to the reaction vial. The vial was placed in an autoclave and the septum was pierced with a needle under a N2 counterflow. The autoclave was purged with H2 (3 × 10 bar), and the mixture was stirred at the appropriate temperature for 72 h under a H2 atmosphere (100 bar). After removal of the H2 atmosphere and equilibration of the mixture to r.t., the crude mixture was filtered through a small plug of silica gel [1 × 5 cm; eluent: CH2Cl2 (20 mL)] and then all the volatiles were removed under reduced pressure. The conversion of the product 16 was determined by 1H NMR and/or HPLC. The ee of the crude product 16 was determined by HPLC analysis. The crude mixture could be further purified by flash column chromatography [silica gel, EtOAc–cyclohexane (1:5)] for more precise analysis.
- 20a Shimizu H, Igarashi D, Kuriyama W, Yusa Y, Sayo N, Saito T. Org. Lett. 2007; 9: 1655
- 20b Shimizu H, Nagano T, Sayo N, Saito T, Ohshima T, Mashima K. Synlett 2009; 3143
- 20c Junge K, Wendt B, Addis D, Zhou S, Das S, Fleischer S, Beller M. Chem. Eur. J. 2011; 17: 101
- 21 Kantam ML, Laha S, Yadav J, Likhar PR, Sreedhar B, Jha S, Bhargava S, Udayakiran M, Jagadeesh B. Org. Lett. 2008; 10: 2979
For selected examples of bifunctional catalysts, see:
For selected examples of regioselective transformations, see:
For selected examples of stereoselective transformations, see:
For a review on related Cu-catalyzed hydrogenation processes, see
For an example of a 1,4-reduction, see:
For a reviews on copper hydride chemistry, see:
For selected examples of nucleophilic copper hydride chemistry, see:
For reviews on chiral NHCs, see:
For chiral guanidines, see:
For selected examples, see:
For a review on a similar design of bidentate NHC ligands bearing a chiral linker unit, see:
For selected examples, see:
Alcohol-tethered NHC precursors have successfully been employed in transition-metal catalysis; for examples, see:
For other copper-catalyzed asymmetric hydrogenations of ketones, see: