Synlett 2024; 35(09): 989-992
DOI: 10.1055/s-0043-1763652
cluster
Chemical Synthesis and Catalysis in Germany

Chiral Bifunctional NHC–Guanidine Ligands for Asymmetric Hydrogenation

Mahadeb Gorai
,


Abstract

We report the synthesis of chiral N-heterocyclic carbene/guanidine bifunctional ligands from readily available amino alcohols. The resulting chiral bifunctional copper(I) complexes are active catalysts in an asymmetric hydrogenation of ketones. We show that the chiral linker unit can be employed for the transfer of stereoinformation.

Supporting Information



Publication History

Received: 29 September 2023

Accepted after revision: 13 November 2023

Article published online:
14 December 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For a review on related Cu-catalyzed hydrogenation processes, see
    • 4a Thiel NO, Pape F, Teichert JF. In Homogeneous Hydrogenation with Non-Precious Catalysts, Chap. 4. Teichert JF. Wiley-VCH; Weinheim: 2019: 87

    • For an example of a 1,4-reduction, see:
    • 4b Zimmermann BM, Kobosil SC. K, Teichert JF. Chem. Commun. 2019; 55: 2293
  • 6 Zimmermann BM, Tran Ngoc T, Tzaras D.-I, Kaicharla T, Teichert JF. J. Am. Chem. Soc. 2021; 143: 16865

    • For a review on a similar design of bidentate NHC ligands bearing a chiral linker unit, see:
    • 11a Pape F, Teichert JF. Eur. J. Org. Chem. 2017; 4206

    • For selected examples, see:
    • 11b Khan RK. M, Zhugralin AR, Torker S, O’Brien RV, Lombardi PJ, Hoveyda AH. J. Am. Chem. Soc. 2012; 134: 12438
    • 11c Khan RK. M, O’Brien RV, Torker S, Li B, Hoveyda AH. J. Am. Chem. Soc. 2012; 134: 12774
  • 12 Wei Y, Lu L.-Q, Li T.-R, Feng B, Wang Q, Xiao W.-J, Alper H. Angew. Chem. Int. Ed. 2016; 55: 2200
  • 13 Guo R, Lu S, Chen X, Tsang C.-W, Jia W, Sui-Seng C, Amoroso D, Abdur-Rashid K. J. Org. Chem. 2010; 75: 937
  • 14 Wan KY, Roelfes F, Lough AJ, Hahn FE, Morris RH. Organometallics 2018; 37: 491
  • 15 Jiang Z, Toffano M, Vo-Thanh G, Bournaud C. ChemCatChem 2021; 13: 712
  • 17 Ligand Precursor 6 Brown solid; yield: 312 mg (63%). 1H NMR (600 MHz, CDCl3): δ = 9.15 (s, 1 H, H-14), 8.40 (s, 1 H, H-15)*, 7.39–7.34 (m, 4 H, H-6, H-11), 7.21–7.19 (m, 7 H, H-16*, H-7, H-8, H-12, H-13), 7.02 (s, 1 H, H-20), 6.98 (s, 1 H, H-20′), 6.92 (d, 3 J N–Ha,4 = 8.4 Hz, 1 H, N–Ha), 6.36 (d, 3 J 9,4 = 11.1 Hz, 1 H, H-9), 5.99 (br s, 1 H, N–Hb), 5.90 (dd, 3 J 4,9 = 11.1 Hz, 3 J 4,N–Ha= 8.2 Hz, 1 H, H-4), 3.77 (m, 2 H, H-2), 2.33 (s, 3 H, H-22), 2.05 (s, 3 H, H-19), 1.88 (s, 3 H, H-19′), 1.20 (d, 3 J 1,2 = 6.6 Hz, 6 H, H-1), 1.10 (d, 3 J 1,2 = 6.4 Hz, 6 H, H-1′). 13C NMR (151 MHz, CDCl3): δ = 153.9 (C-3), 141.9 (C-21), 136.6 (C-14), 135.2 (C-10), 134.5 (C-18), 133.9 (C-18′), 133.7 (C-5), 130.5 (C-17), 130.2 (C-20′), 130.0 (C-20), 129.9 (Ar-C), 129.4 (Ar-C), 129.3 (Ar-C), 127.9 (Ar-C), 127.8 (Ar-C), 123.9 (C-16)*, 123.3 (C-15)*, 68.1 (C-9), 59.1 (C-4), 46.0 (C-2), 23.2 (C-1′), 22.1 (C-1), 21.2 (C-22), 17.1 (C-19), 17.0 (C-19′). 19F NMR (471 MHz, CDCl3): δ = –71.7 (d, 1 J F,P = 713.2 Hz). 31P NMR (202 MHz, CDCl3): δ = –143.9 (sept, 1 J P,F = 713.2 Hz). HRMS (ESI): m/z [M – PF6]+ calcd for C33H42N5: 508.3435; found: 508.3435.
  • 18 Ligand Precursor 7 Yellow solid; yield: 178 mg (70%). 1H NMR (600 MHz, CDCl3): δ = 8.84 (s, 1 H, H-8), 8.13 (app t, 3 J = 1.6 Hz, 1 H, H-9)*, 7.24 (app t, 3 J = 1.6 Hz, 1 H, H-10)*, 7.04 (s, 2 H, H-14, H-14′), 5.71 (br s, 1 H, N–Ha), 4.91 (dd, 3 J 5,4b= 10.8 Hz, 3 J 5,4a =3.0 Hz, 1 H, H-5), 4.05 (m, 1 H, H-4a), 3.87 (d, 3 J 4b,5 = 11.2 Hz, 1 H, H-4b), 4.03–3.58 (m, 3 H, N–Hb, H-1), 2.36 (s, 3 H, H-16), 2.03 (s, 3 H, H-13), 2.00 (s, 3 H, H-13′), 1.33 (d, 3 J 2,1 = 6.3 Hz, 6 H, H-2), 1.24 (d, 3 J 2′,1= 6.3 Hz, 6 H, H-2′), 1.09 (s, 9 H, H-7). 13C NMR (151 MHz, CDCl3): δ = 153.4 (C-3), 141.9 (C-15), 137.5 (C-8), 134.2 (C-12), 133.8 (C-12′) 130.3 (C-14), 130.2 (C-14′), 130.1 (C-11), 124.1 (C-9)*, 121.4 (C-10)*, 68.7 (C-5), 45.2 (C-1), 41.5 (C-4), 34.7 (C-6), 26.4 (C-7), 22.2 (C-2), 22.0 (C-2′), 21.2 (C-16), 17.3 (C-13), 17.0 (C-13′). 19F NMR (471 MHz, CDCl3): δ = –71.7 (d, 1 J F,P = 714.2 Hz). 31P NMR (202 MHz, CDCl3): δ = –144.2 (sept, 1 J P,F = 714.2 Hz). HRMS (ESI): m/z [M – PF6]+ calcd for C25H42N5: 412.3435; found: 412.3132.
  • 19 (1S)-1-Phenylethanol (16): Typical Procedure for Asymmetric Hydrogenation By following the reported procedure,6 in an Ar-filled glove box, a 5 mL vial equipped with a stirrer bar was charged with CuCl (1.98 mg, 2.00 μmol, 10.0 mol%), the appropriate ligand precursor 6 or 7 (2.4 μmol, 12 mol%), and t-BuONa (24.9 mg, 0.26 mmol, 1.30 equiv). The vial was capped inside the glovebox and then transferred outside. The solids were dissolved in THF (1.00 mL), and the resulting mixture was stirred for 15 min at 40 °C. 15-Crown-5 (25.0 μL, 0.260 mmol, 1.30 equiv) was added to the mixture. Acetophenone (15; 24.0 mg, 0.20 mmol, 1.00 equiv) was dissolved in THF (1.00 mL) and the solution was transferred to the reaction vial. The vial was placed in an autoclave and the septum was pierced with a needle under a N2 counterflow. The autoclave was purged with H2 (3 × 10 bar), and the mixture was stirred at the appropriate temperature for 72 h under a H2 atmosphere (100 bar). After removal of the H2 atmosphere and equilibration of the mixture to r.t., the crude mixture was filtered through a small plug of silica gel [1 × 5 cm; eluent: CH2Cl2 (20 mL)] and then all the volatiles were removed under reduced pressure. The conversion of the product 16 was determined by 1H NMR and/or HPLC. The ee of the crude product 16 was determined by HPLC analysis. The crude mixture could be further purified by flash column chromatography [silica gel, EtOAc–cyclohexane (1:5)] for more precise analysis.
  • 21 Kantam ML, Laha S, Yadav J, Likhar PR, Sreedhar B, Jha S, Bhargava S, Udayakiran M, Jagadeesh B. Org. Lett. 2008; 10: 2979