Subscribe to RSS
DOI: 10.1055/s-0043-1773490
One-Pot Microwave-Assisted Intramolecular Rearrangement of Pyranone Amide to Pyridone Ester
The authors acknowledge Science and Engineering Research Board (SERB) financial support (SPG/2021/004524).
Abstract
This investigation presents a novel, cost-effective approach for creating a 2-pyridone core substituted with an ester group through intramolecular rearrangement. This one-step transformation involves an amide-mediated intramolecular transformation of a pyranone to pyridone scaffold, followed by alcoholic-mediated ester formation, in 75–85% yield. Deuterated alcohol was used to confirm the esterification under alcoholic conditions. The reaction requires a nucleophile source from the solvent, which was observed by performing the reaction of three derivatives in CD3OD to obtain the desired carboxylate compounds, replacing -OR with -OCD3. All synthesized compounds were characterized by spectroscopic analysis, and six selected compounds were further confirmed by single-crystal X-ray diffraction studies.
Key words
microwave-assisted method - alcoholic conditions - intramolecular rearrangement - pyranones - pyridones - ORTEPSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1773490.
- Supporting Information
Publication History
Received: 22 May 2024
Accepted after revision: 06 September 2024
Article published online:
21 October 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Asmaa K, Fatima B, Zahira K, Noureddine C.-B. Mini-Rev. Org. Chem. 2023; 20: 358
- 2 Kamauchi H, Kimura Y, Ushiwatari M, Suzuki M, Seki T, Takao K, Sugita Y. Bioorg. Med. Chem. Lett. 2021; 37: 127845
- 3 Desai NC, Mehta H, Harsora J. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2021; 60: 261
- 4 Azzam RA, Elboshi HA, Elgemeie GH. ACS Omega 2020; 5: 30023
- 5 Kumar S, Gupta S, Gaikwad S, Abadi LF, Bhutani LK. K, Kulkarni S, Singh IP. Med. Chem. 2019; 15: 561
- 6 Nicely LG, Vala RM, Upadhyay DB, Nogales J, Chi C, Banerjee S, Patel HM. RSC Adv. 2022; 12: 23889
- 7 Hirano K, Miura M. Chem. Sci. 2018; 9: 22
- 8 Shang Y, Wu C, Gao Q, Liu C, Li L, Zhang X, Cheng H.-G, Liu S, Zhou Q. Nat. Commun. 2021; 12: 2988
- 9 Jaiswal PK, Sharma V, Mathur M, Chaudhary S. Org. Lett. 2018; 20: 6059
- 10 Shan Y, Su L, Zhao Z, Chen D. Adv. Synth. Catal. 2021; 363: 906
- 11 Fujii M, Nishimura T, Koshiba T, Yokoshima S, Fukuyama T. Org. Lett. 2013; 15: 232
- 12 Liu S, Li J, Lin J, Liu F, Liu T, Huang C. Org. Biomol. Chem. 2020; 18: 1130
- 13 Bai D, Wang X, Zheng G, Li X. Angew. Chem. Int. Ed. 2018; 57: 6633 , Angew. Chem. 2018, 130, 6743
- 14 Yang Y, Fei C, Wang K, Liu B, Jiang D, Yin B. Org. Lett. 2018; 20: 2273
- 15 Bi H.-Y, Wu Q.-Y, Zhou X.-M, Xu H.-J, Liang C, Mo D.-L, Ma X.-P. Org. Lett. 2022; 24: 4675
- 16 Goel A, Singh FV, Sharon A, Maulik PR. Synlett 2005; 623
- 17 Pratap R, Raghunandan R, Maulik P, Ram VJ. Tetrahedron Lett. 2007; 48: 4939
- 18 Kumar R, Kumari N, Kaur H, Bal C, Sharon A. J. Heterocycl. Chem. 2023; 60: 1641
- 19 Kushwaha PK, Srivastava KS, Kumari N, Kumar R, Mitra D, Sharon A. Bioorg. Med. Chem. 2022; 56: 116612
- 20 Chakravarty H, Ojha D, Konreddy AK, Bal C, Chandra NS, Sharon A, Chattopadhyay D. Antiviral Chem. Chemother. 2015; 24: 127
- 21 Timmarayaperumal S, Shanmugam S. ACS Omega 2017; 2: 4900
- 22 Tobisu M, Nakamura R, Kita Y, Chatani N. Bull. Korean Chem. Soc. 2010; 31: 582
- 23 Mishra UK, Bal C. J. Heterocycl. Chem. 2022; 59: 2258
- 24 CCDC 2333304 (2a), CCDC 2333261 (2g), CCDC 2333306 (4a), CCDC 2333250 (4h), CCDC 2333315 (4p), and CCDC 2333316 (4m) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures