Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett
DOI: 10.1055/s-0043-1774906
DOI: 10.1055/s-0043-1774906
letter
Tandem Diboration–Protoboration of Terminal Alkynes: A Practical Route to α-Substituted Alkenyl Boronates
This work was support by the US National Institutes of Health (NIH, R35GM127140 (JPM)), the National Science Foundation (NSF, CHEM-1955098 (DW)), and by instrumentation grants from the National Science Foundation (NSF) MRI award, CHE2117246), and the National Institutes of Health (NIH) HEI-S10 award 1S10OD026910.
Abstract
A practical method is introduced for the catalytic conversion of terminal alkynes into α-substituted vinyl boronic esters. The process employs catalytic amounts of nanoparticle-supported gold catalysts and catalytic amounts of copper to effect the overall transformation.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1774906.
- Supporting Information
Publication History
Received: 28 March 2024
Accepted after revision: 18 May 2024
Article published online:
05 June 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Miyaura N, Yamada K, Suzuki A. Tetrahedron Lett. 1979; 20: 3437
- 1b Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 1c Lennox AJ. J, Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412
- 1d Suzuki A. Chem. Commun. 2005; 4759
- 2a Beletskaya I, Pelter A. Tetrahedron 1997; 53: 4957
- 2b Barbeyron R, Benedetti E, Cossy J, Vasseur J.-J, Arseniyadis S, Smietana M. Tetrahedron 2014; 70: 8431
- 2c Yoshida H. ACS Catal. 2016; 6: 1799
- 2d Geier SJ, Vogels CM, Melanson JA, Westcott SA. Chem. Soc. Rev. 2022; 51: 8877
- 3a Tucker CE, Davidson J, Knochel P. J. Org. Chem. 1992; 57: 3482
- 3b Pereira S, Srebnik M. Tetrahedron Lett. 1996; 37: 3283
- 3c Ohmura T, Yamamoto Y, Miyaura N. J. Am. Chem. Soc. 2000; 122: 4990
- 3d Gunanathan C, Hölscher M, Pan F, Leitner W. J. Am. Chem. Soc. 2012; 134: 14349
- 3e Obligacion JV, Neely JM, Yazdani AN, Pappas I, Chirik PJ. J. Am. Chem. Soc. 2015; 137: 5855
- 4 Morrill C, Funk TW, Grubbs RH. Tetrahedron Lett. 2004; 45: 7733
- 5a Kou T, Jun T, Tatsuo I, Norio M. Chem. Lett. 2000; 29: 126
- 5b Takagi J, Takahashi K, Ishiyama T, Miyaura N. J. Am. Chem. Soc. 2002; 124: 8001
- 6 Gao F, Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 10961
- 7a Jang H, Zhugralin AR, Lee Y, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 7859
- 7b Mao L, Bertermann R, Emmert K, Szabó K, Marder TB. Org. Lett. 2017; 19: 6586
- 8a Lavallo V, Canac Y, Präsang C, Donnadieu B, Bertrand G. Angew. Chem. Int. Ed. 2005; 44: 5705
- 8b Gao Y, Yazdani S, Kendrick IV A, Junor GP, Kang T, Grotjahn DB, Bertrand G, Jazzar R, Engle KM. Angew. Chem. Int. Ed. 2021; 60: 19871
- 9a Viso A, Fernández de la Pradilla R, Tortosa M. ACS Catal. 2022; 12: 10603
- 9b Miller SP, Morgan JB, Nepveux FJ, Morken JP. Org. Lett. 2004; 6: 131
- 9c Mlynarski SN, Schuster CH, Morken JP. Nature 2014; 505: 386
- 9d Lee J, Radomkit S, Torker S, del Pozo J, Hoveyda AH. Nat. Chem. 2018; 10: 99
- 9e Blaisdell TP, Caya TC, Zhang L, Sanz-Marco A, Morken JP. J. Am. Chem. Soc. 2014; 136: 9264
- 9f Nóvoa L, Trulli L, Parra A, Tortosa M. Angew. Chem. Int. Ed. 2021; 60: 11763
- 9g Xu N, Kong Z, Wang JZ, Lovinger GJ, Morken JP. J. Am. Chem. Soc. 2022; 144: 17815
- 9h Teresa J, Velado M, Fernández de la Pradilla R, Viso A, Lozano B, Tortosa M. Chem. Sci. 2023; 14: 1575
- 9i Zhang M, Lee PS, Allais C, Singer RA, Morken JP. J. Am. Chem. Soc. 2023; 145: 8308
- 9j Kong Z, Hu W, Morken JP. ACS Catal. 2023; 11522
- 10a Ishiyama T, Matsuda N, Miyaura N, Suzuki A. J. Am. Chem. Soc. 1993; 115: 11018
- 10b Prokopcová H, Ramírez J, Fernández E, Kappe CO. Tetrahedron Lett. 2008; 49: 4831
- 10c Chen Q, Zhao J, Ishikawa Y, Asao N, Yamamoto Y, Jin T. Org. Lett. 2013; 15: 5766
- 11 Zhao F, Jia X, Li P, Zhao J, Zhou Y, Wang J, Liu H. Org. Chem. Front. 2017; 4: 2235
- 12a Lesley G, Nguyen P, Taylor NJ, Marder TB, Scott AJ, Clegg W, Norman NC. Organometallics 1996; 15: 5137
- 12b Iverson CN, Smith MR. Organometallics 1996; 15: 5155
- 12c Cui Q, Musaev DG, Morokuma K. Organometallics 1997; 16: 1355
- 12d Cui Q, Musaev DG, Morokuma K. Organometallics 1998; 17: 1383
- 12e Ali HA, El Aziz Al Quntar A, Goldberg I, Srebnik M. Organometallics 2002; 21: 4533
- 13 Thomas RLl, Souza FE. S, Marder TB. J. Chem. Soc., Dalton Trans. 2001; 1650
- 14a Toshima N, Yonezawa T. New J. Chem. 1998; 22: 1179
- 14b Narayan N, Meiyazhagan A, Vajtai R. Materials 2019; 12: 3602
- 14c Astruc D. Chem. Rev. 2020; 120: 461
- 15 Ishiyama T, Kitano T, Miyaura N. Tetrahedron Lett. 1998; 39: 2357
- 16 Khan A, Asiri AM, Kosa SA, Garcia H, Grirrane A. J. Catal. 2015; 329: 401
- 17 (E)-2,2′-(3-Phenylprop-1-ene-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) In a dry box, an oven-dried 2-dram vial was charged with prop-2-yn-1-ylbenzene (122 mg, 1.05 mmol, 1.05 equiv), B2(pin)2 (254 mg, 1.00 mmol, 1.00 equiv), and 3% Au/TiO2 (98 mg, 5.00 μmol, 0.05 equiv). The mixture was dissolved in toluene (1.00 mL). The reaction mixture was sealed with a PTFE-lined closed cap, brought out of the dry box and stirred at 80 °C for 24 h. At the completion of the reaction, the crude mixture was passed through a short pad of Celite using diethyl ether as solvent. The filtrate was concentrated and purified by column chromatography (silica gel, 0–1% ethyl acetate/hexane, stained with KMnO4) to give the desired product as a white solid (296 mg, 82%). 1H NMR (500 MHz, CDCl3): δ = 7.24 (m, 2 H), 7.18–7.13 (m, 3 H), 5.79 (s, 1 H), 3.55 (d, J = 1.9 Hz, 2 H), 1.26 (s, 12 H), 1.19 (s, 12 H). 13C NMR (126 MHz, CDCl3): δ = 139.4, 129.8, 128.3, 126.1, 83.8, 83.5, 45.7, 25.0, 24.9. HRMS (DART): m/z [M + H]+ calcd 371.2560; found: 371.2571. The reaction could also be conducted without a dry box using Schlenk techniques.
- 18 Hitosugi S, Tanimoto D, Nakanishi W, Isobe H. Chem. Lett. 2012; 41: 972
- 19a Miura H, Hachiya Y, Nishio H, Fukuta Y, Toyomasu T, Kobayashi K, Masaki Y, Shishido T. ACS Catal. 2021; 11: 758
- 19b Oka N, Yamada T, Sajiki H, Akai S, Ikawa T. Org. Lett. 2022; 24: 3510
- 19c Ito M, Yamazaki H, Ito A, Oda R, Komiya M, Higuchi K, Sugiyama S. Eur. J. Org. Chem. 2023; 26: e202300458
- 20 4,4,5,5-Tetramethyl-2-(3-phenylprop-1-en-2-yl)-1,3,2-dioxaborolane In a dry box, an oven-dried 2-dram vial was charged with (E)-2,2′-(3-phenylprop-1-ene-1,2-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (74.0 mg, 0.20 mmol, 1.00 equiv) and lithium methoxide (19.0 mg, 0.50 mmol, 2.5 equiv). The mixture was dissolved in a freshly prepared solution of CuI·2LiCl (0.40 M Cu in THF, 1.00 mL). Isopropanol (solvent grade; 15.6 mg, 0.26 mmol, 1.30 equiv) was then added. The reaction mixture was sealed with a PTFE-lined closed cap, brought out of the dry box, and stirred at rt for 16 h. At the completion of the reaction, the crude mixture was passed through a short pad of silica using diethyl ether as solvent. The filtrate was concentrated and purified by column chromatography (silica gel, 0–2% ethyl acetate/hexane, stained with KMnO4) to give the desired product as a colorless oil (39 mg, 80%). 1H NMR (500 MHz, CDCl3): δ = 7.26 (m, 2 H), 7.22–7.14 (m, 3 H), 5.84 (d, J = 3.3 Hz, 1 H), 5.54 (s, 1 H), 3.49 (s, 2 H), 1.22 (s, 12 H). 13C NMR (126 MHz, CDCl3): δ = 140.8, 129.9, 129.3, 128.2, 125.8, 83.6, 41.5, 24.8. HRMS (DART): m/z [M + H]+ calcd 245.1707; found: 245.1712.
For review of hydroboration of alkyne, see:
Selective examples of transition-metal-catalyzed β-selective hydroboration:
For an alternate Cu-catalyzed synthesis of 2-boryl-1-alkenes from propargylic alcohols, see:
For a recent review on site-selective functionalization of vicinal bis(boronates), see:
For selected examples of site-selective functionalization, see: