Subscribe to RSS
DOI: 10.1055/s-0043-1775396
A Urease-Catalyzed Three-Component Reaction for the Efficient and Sustainable Synthesis of Highly Substituted 4H-Pyrans in Water as the Solvent
We would like to acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) for the 600 MHz NMR instrument used for this study (Grant: INST 36/170-1 FUGG). M.A.S. is grateful to Deutscher Akademischer Austauschdienst (DAAD) for financial support [Research Grants - Doctoral Programmes in Germany, 2019/20 (57440921)].
Dedicated to Professor Hiriyakkanavar Ila on the occasion of her 80th birthday
Abstract
An efficient urease-catalyzed approach for the synthesis of highly substituted 6-amino-4H-pyran-3-carbonitriles based on the formation of three bonds in one step is developed. This unprecedented three-component reaction between one molecule of an aromatic aldehyde and two molecules of an aroylacetonitrile proceeds by employing commercially available urease from jack bean (Canavalia ensiformis) as the catalyst in water at 65 °C to deliver the desired 4H-pyrans in yields of up to 92%. The transformation is proposed to occur via a domino Knoevenagel condensation/1,4-addition/O-cyclization/tautomerization sequence, providing a practical and sustainable approach to 6-amino-4H-pyran-3-carbonitriles from commercially available substrates. Full and unambiguous structural elucidation of all the products is achieved by means of NMR spectroscopy and X-ray crystal structure analysis.
Key words
heterocycles - 4H-pyrans - multicomponent reaction - biocatalysis - enzymes - urease - green chemistrySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775396.
- Supporting Information
Publication History
Received: 09 June 2024
Accepted after revision: 02 August 2024
Article published online:
25 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Katritzky AR, Ramsden CA, Joule JA, Zhdankin VV. Handbook of Heterocyclic Chemistry, 3rd ed. 2010
- 2 Singh PK, Silakari O. ChemMedChem 2018; 13: 1071
- 3 Tashrifi Z, Mohammadi-Khanaposhtani M, Hamedifar H, Larijani B, Ansari S, Mahdavi M. Mol. Diversity 2020; 24: 1385
- 4 Mohareb RM, Abdo NY. M. Chem. Pharm. Bull. 2015; 63: 678
- 5 Amr A.-GE, Mohamed AM, Mohamed SF, Abdel-Hafez NA, Hammam AE.-F. G. Bioorg. Med. Chem. 2006; 14: 5481
- 6 Zhang G, Zhang Y, Yan J, Chen R, Wang S, Ma Y, Wang R. J. Org. Chem. 2012; 77: 878
- 7 Kumar D, Reddy VB, Sharad S, Dube U, Kapur S. Eur. J. Med. Chem. 2009; 44: 3805
- 8 Smith CW, Bailey JM, Billingham ME. J, Chandrasekhar S, Dell CP, Harvey AK, Hicks CA, Kingston AE, Wishart GN. Bioorg. Med. Chem. Lett. 1995; 5: 2783
- 9 Agarwal S, Sethiya A, Soni J, Sahiba N, Teli P. Appl. Organomet. Chem. 2022; 36: e6604
- 10 Maddila S, Kerru N, Jonnalagadda SB. Molecules 2022; 27: 6347
- 11 Zhang M, Chen M.-N, Li J.-M, Liu N, Zhang Z.-H. ACS Comb. Sci. 2019; 21: 685 ; and references cited therein
- 12 Yadav MB, Vagh SS, Jeong YT. Eur. J. Org. Chem. 2022; e202101534
- 13 Kumar PP, Reddy YD, Reddy CV. R, Devi BR, Dubey PK. Tetrahedron Lett. 2014; 55: 2177
- 14 Martín N, Martínez-Grau A, Seoane C, Marco JL. Tetrahedron: Asymmetry 1995; 6: 255
- 15 Quinteiro M, Seoane C, Soto JL. J. Heterocycl. Chem. 1978; 15: 57
- 16 Tietze LF, Brasche G, Gericke KM. Domino Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2006
- 17 Rotstein BH, Zaretsky S, Rai V, Yudin AK. Chem. Rev. 2014; 114: 8323
- 18 Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
- 19 Orru RV. A, Ruijter E. Synthesis of Heterocycles via Multicomponent Reactions, Vols. I and II. Springer; Berlin: 2010
- 20 Jumbam ND, Masamba W. Molecules 2020; 25: 5935
- 21 Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
- 22 Sheldon RA. ACS Sustainable Chem. Eng. 2018; 6: 32
- 23 Lõpez-Iglesias M, Gotor-Fernández V. Chem. Rec. 2015; 15: 743
- 24 Bornscheuer UT, Kazlauskas RJ. Angew. Chem. Int. Ed. 2004; 43: 6032
- 25 Budhiraja M, Ali A, Tyagi V. Asian J. Org. Chem. 2023; 12: e202300427
- 26 Ma X.-L, Wang Y.-H, Shen J.-H, Hu Y. Pharm. Front. 2021; 3: e87
- 27 Sousa AC, Martins LO, Robalo MP. Molecules 2021; 26: 3719
- 28 Santra S. ChemistrySelect 2019; 4: 12630
- 29 Hajdok S, Leutbecher H, Greiner G, Conrad J, Beifuss U. Tetrahedron Lett. 2007; 48: 5073
- 30 Leutbecher H, Conrad J, Klaiber I, Beifuss U. Synlett 2005; 3126
- 31 Yang Z.-J, Gong Q.-T, Wang Y, Yu Y, Liu Y.-H, Wang N, Yu X.-Q. Mol. Catal. 2020; 491: 110983
- 32 Bora PP, Bihani M, Bez G. RSC Adv. 2015; 5: 50597
- 33 Pratap UR, Jawale DV, Netankar PD, Mane RA. Tetrahedron Lett. 2011; 52: 5817
- 34 Kappaun K, Piovesan AR, Carlini CR, Ligabue-Braun R. J. Adv. Res. 2018; 13: 3
- 35 Krajewska B. J. Mol. Catal. B: Enzym. 2009; 59: 9
- 36 Zhu G, Li Y. Mol. Diversity 2021; 25: 2149
- 37 Tamaddon F, Ghazi S. Catal. Commun. 2015; 72: 63
- 38 Vargas AY, Rojas HA, Romanelli GP, Martínez JJ. Green Process. Synth. 2017; 6: 377
- 39 Tamaddon F, Ghazi S, Noorbala MR. J. Mol. Catal. B: Enzym. 2016; 127: 89
- 40 Saleh MA, Conrad J, Beifuss U. manuscript in preparation
- 41 Krajewska B, Leszko M, Zaborska W. J. Chem. Tech. Biotechnol. 1990; 48: 337
- 42 Cortes-Clerget M, Yu J, Kincaid JR. A, Walde P, Gallou F, Lipshutz BH. Chem. Sci. 2021; 12: 4237
- 43 Butler RN, Coyne AG. Chem. Rev. 2010; 110: 6302
- 44 Mohareb RM, MegallyAbdo NY. Molecules 2015; 20: 11535
- 45 Pourian E, Javanshir S, Dolatkhah Z, Molaei S, Maleki A. ACS Omega 2018; 3: 5012
- 46 CCDC 2357923 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures