Semin Thromb Hemost 2024; 50(04): 620-637
DOI: 10.1055/s-0043-1777070
Review Article

Bleeding Scoring Systems in Neonates: A Systematic Review

1   Neonatal Intensive Care Unit, “Agios Panteleimon” General Hospital of Nikea, Piraeus, Greece
,
Stavroula Parastatidou
2   Neonatal Intensive Care Unit, “Elena Venizelou” Maternity Hospital, Athens, Greece
,
Aikaterini Konstantinidi
1   Neonatal Intensive Care Unit, “Agios Panteleimon” General Hospital of Nikea, Piraeus, Greece
,
3   Laboratory of Haematology and Blood Bank Unit, “Attiko” Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
,
Nicoletta Iacovidou
4   Neonatal Department, Aretaeio Hospital, National and Kapodistrian University of Athens, Athens, Greece
,
Daniele Piovani
5   Department of Biomedical Sciences, Humanitas University, Milan, Italy
6   IRCCS Humanitas Research Hospital, Milan, Italy
,
Stefanos Bonovas
5   Department of Biomedical Sciences, Humanitas University, Milan, Italy
6   IRCCS Humanitas Research Hospital, Milan, Italy
,
Argirios E. Tsantes
3   Laboratory of Haematology and Blood Bank Unit, “Attiko” Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
› Author Affiliations

Abstract

We conducted a systematic review aiming to summarize the data on the current hemorrhage prediction models and evaluate their potential for generalized application in the neonatal population. The electronic databases PubMed and Scopus were searched, up to September 20, 2023, for studies that focused on development and/or validation of a prediction model for bleeding risk in neonates, and described the process of model building. Nineteen studies fulfilled the inclusion criteria for the present review. Eighteen bleeding risk prediction models in the neonatal population were identified, four of which were internally validated, one temporally and one externally validated. The existing prediction models for neonatal hemorrhage are mostly based on clinical variables and do not take into account the clinical course and hemostatic profile of the neonates. Most studies aimed at predicting the risk of intraventricular hemorrhage (IVH) reflecting the fact that IVH is the most frequent and serious bleeding complication in preterm neonates. A justification for the study sample size for developing the prediction model was given only by one study. Prediction and stratification of risk of hemorrhage in neonates is yet to be optimized. To this end, qualitative standards for model development need to be further improved. The assessment of the risk of bleeding incorporating platelet count, coagulation parameters, and a set of relevant clinical variables is crucial. Large, rigorous, collaborative cohort studies are warranted to develop a robust prediction model to inform the need for transfusion, which is a fundamental step towards personalized transfusion therapy in neonates.



Publication History

Article published online:
28 November 2023

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Davenport P, Sola-Visner M. Hemostatic challenges in neonates. Front Pediatr 2021; 9 (55) 627715
  • 2 Sokou R, Piovani D, Konstantinidi A. et al. A risk score for predicting the incidence of hemorrhage in critically ill neonates: development and validation study. Thromb Haemost 2021; 121 (02) 131-139
  • 3 Venkatesh V, Curley A, Khan R. et al. A novel approach to standardised recording of bleeding in a high risk neonatal population. Arch Dis Child Fetal Neonatal Ed 2013; 98 (03) F260-F263
  • 4 Fustolo-Gunnink SF, Huisman EJ, van der Bom JG. et al. Are thrombocytopenia and platelet transfusions associated with major bleeding in preterm neonates? A systematic review. Blood Rev 2019; 36: 1-9
  • 5 Christensen RD, MacQueen BC, Carroll PC, Sola-Visner MC. Bleeding problems in extremely low birth weight neonates: quick (and Wintrobe) thinking needed. Neoreviews 2016; 17 (11) e645-e656
  • 6 Gerday E, Baer VL, Lambert DK. et al. Testing platelet mass versus platelet count to guide platelet transfusions in the neonatal intensive care unit. Transfusion 2009; 49 (10) 2034-2039
  • 7 Gilard V, Tebani A, Bekri S, Marret S. Intraventricular hemorrhage in very preterm infants: a comprehensive review. J Clin Med 2020; 9 (08) 2447
  • 8 Ancel P-Y, Goffinet F, Kuhn P. et al; EPIPAGE-2 Writing Group. Survival and morbidity of preterm children born at 22 through 34 weeks' gestation in France in 2011: results of the EPIPAGE-2 cohort study. JAMA Pediatr 2015; 169 (03) 230-238
  • 9 Christian EA, Jin DL, Attenello F. et al. Trends in hospitalization of preterm infants with intraventricular hemorrhage and hydrocephalus in the United States, 2000-2010. J Neurosurg Pediatr 2016; 17 (03) 260-269
  • 10 Schnitzler ER, Weiss MG. Chapter 13 - Neonatal intracranial hemorrhage. In: Biller J. ed. Stroke in Children and Young Adults. 2nd ed. Philadelphia, PA: W.B. Saunders;; 2009: 249-259
  • 11 Leijser LM, de Vries LS. Chapter 8 - Preterm brain injury: germinal matrix–intraventricular hemorrhage and post-hemorrhagic ventricular dilatation. In: de Vries LS, Glass HC. eds. Handbook of Clinical Neurology. Vol 162. Philadelphia, PA: Elsevier; 2019: 173-199
  • 12 Lee M, Wu K, Yu A. et al. Pulmonary hemorrhage in neonatal respiratory distress syndrome: radiographic evolution, course, complications and long-term clinical outcomes. J Neonatal Perinatal Med 2019; 12 (02) 161-171
  • 13 Barnes ME, Feeney E, Duncan A. et al. Pulmonary haemorrhage in neonates: systematic review of management. Acta Paediatr 2022; 111 (02) 236-244
  • 14 Singh H, Ee L. Massive gastrointestinal bleeding from neonatal duodenal ulcer. J Paediatr Child Health 2017; 53 (10) 1031-1031
  • 15 Reeves PT, James-Davis L, Khan MA. Gastrointestinal bleeding in the neonate: updates on diagnostics, therapeutics, and management. Neoreviews 2023; 24 (07) e403-e413
  • 16 Lazzaroni M, Petrillo M, Tornaghi R. et al. Upper GI bleeding in healthy full-term infants: a case-control study. Am J Gastroenterol 2002; 97 (01) 89-94
  • 17 Hankins GD, Speer M. Defining the pathogenesis and pathophysiology of neonatal encephalopathy and cerebral palsy. Obstet Gynecol 2003; 102 (03) 628-636
  • 18 Neu J, Walker WA. Necrotizing enterocolitis. N Engl J Med 2011; 364 (03) 255-264
  • 19 Sokou R, Parastatidou S, Konstantinidi A. et al. Fresh frozen plasma transfusion in the neonatal population: a systematic review. Blood Rev 2022; 55: 100951
  • 20 Goel R, Josephson CD. Recent advances in transfusions in neonates/infants. F1000 Res 2018; 7 (609) F1000 Faculty Rev-609 [version 1; peer review: 2 approved]
  • 21 Curley A, Stanworth SJ, Willoughby K. et al; PlaNeT2 MATISSE Collaborators. Randomized trial of platelet-transfusion thresholds in neonates. N Engl J Med 2019; 380 (03) 242-251
  • 22 New HV, Berryman J, Bolton-Maggs PH. et al; British Committee for Standards in Haematology. Guidelines on transfusion for fetuses, neonates and older children. Br J Haematol 2016; 175 (05) 784-828
  • 23 Brinza C, Burlacu A, Tinica G, Covic A, Macovei L. A systematic review on bleeding risk scores' accuracy after percutaneous coronary interventions in acute and elective settings. Healthcare (Basel, Switzerland) 2021; 9 (02) 148
  • 24 Marques Antunes M, Alves M, Pinto FJ, Agnelli G, Caldeira D. The high-risk bleeding category of different scores in patients with venous thromboembolism: Systematic review and meta-analysis. Eur J Intern Med 2021; 94: 45-55
  • 25 Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009; 62 (10) 1006-1012
  • 26 Arkin N, Wang Y, Wang L. Establishment and evaluation of nomogram for predicting intraventricular hemorrhage in neonatal acute respiratory distress syndrome. BMC Pediatr 2023; 23 (01) 47
  • 27 Ashoori M, O'Toole JM, O'Halloran KD. et al. Machine learning detects intraventricular haemorrhage in extremely preterm infants. Children (Basel) 2023; 10 (06) 917
  • 28 Chien LY, Whyte R, Thiessen P, Walker R, Brabyn D, Lee SK. Canadian Neonatal Network. Snap-II predicts severe intraventricular hemorrhage and chronic lung disease in the neonatal intensive care unit. J Perinatol 2002; 22 (01) 26-30
  • 29 Coskun Y, Isik S, Bayram T, Urgun K, Sakarya S, Akman I. A clinical scoring system to predict the development of intraventricular hemorrhage (IVH) in premature infants. Childs Nerv Syst 2018; 34 (01) 129-136
  • 30 Heuchan AM, Evans N, Henderson Smart DJ, Simpson JM. Perinatal risk factors for major intraventricular haemorrhage in the Australian and New Zealand Neonatal Network, 1995-97. Arch Dis Child Fetal Neonatal Ed 2002; 86 (02) F86-F90
  • 31 Horbar JD, Pasnick M, McAuliffe TL, Lucey JF. Obstetric events and risk of periventricular hemorrhage in premature infants. Am J Dis Child 1983; 137 (07) 678-681
  • 32 Huvanandana J, Nguyen C, Thamrin C, Tracy M, Hinder M, McEwan AL. Prediction of intraventricular haemorrhage in preterm infants using time series analysis of blood pressure and respiratory signals. Sci Rep 2017; 7: 46538
  • 33 Lee J, Hong M, Yum SK, Lee JH. Perinatal prediction model for severe intraventricular hemorrhage and the effect of early postnatal acidosis. Childs Nerv Syst 2018; 34 (11) 2215-2222
  • 34 Luque MJ, Tapia JL, Villarroel L. et al; Neocosur Neonatal Network. A risk prediction model for severe intraventricular hemorrhage in very low birth weight infants and the effect of prophylactic indomethacin. J Perinatol 2014; 34 (01) 43-48
  • 35 Siddappa AM, Quiggle GM, Lock E, Rao RB. Predictors of severe intraventricular hemorrhage in preterm infants under 29-weeks gestation. J Matern Fetal Neonatal Med 2021; 34 (02) 195-200
  • 36 Singh R, Gorstein SV, Bednarek F, Chou JH, McGowan EC, Visintainer PF. A predictive model for SIVH risk in preterm infants and targeted indomethacin therapy for prevention. Sci Rep 2013; 3: 2539
  • 37 Vogtmann C, Koch R, Gmyrek D, Kaiser A, Friedrich A. Risk-adjusted intraventricular hemorrhage rates in very premature infants: towards quality assurance between neonatal units. Dtsch Arztebl Int 2012; 109 (31–32): 527-533
  • 38 Wallin LA, Rosenfeld CR, Laptook AR. et al. Neonatal intracranial hemorrhage: II. Risk factor analysis in an inborn population. Early Hum Dev 1990; 23 (02) 129-137
  • 39 Weinstein RM, Parkinson C, Everett AD, Graham EM, Vaidya D, Northington FJ. A predictive clinical model for moderate to severe intraventricular hemorrhage in very low birth weight infants. J Perinatol 2022; 42 (10) 1374-1379
  • 40 Zernikow B, Holtmannspoetter K, Michel E, Theilhaber M, Pielemeier W, Hennecke KH. Artificial neural network for predicting intracranial haemorrhage in preterm neonates. Acta Paediatr 1998; 87 (09) 969-975
  • 41 Guedalia J, Lipschuetz M, Daoud-Sabag L. et al. Prediction of neonatal subgaleal hemorrhage using first stage of labor data: a machine-learning based model. J Gynecol Obstet Hum Reprod 2022; 51 (03) 102320
  • 42 Fustolo-Gunnink SF, Fijnvandraat K, Putter H. et al. Dynamic prediction of bleeding risk in thrombocytopenic preterm neonates. Haematologica 2019; 104 (11) 2300-2306
  • 43 Katsaras GΝ, Sokou R, Tsantes AG. et al. The use of thromboelastography (TEG) and rotational thromboelastometry (ROTEM) in neonates: a systematic review. Eur J Pediatr 2021; 180 (12) 3455-3470
  • 44 Sokou R, Piovani D, Konstantinidi A. et al. Prospective temporal validation of the neonatal bleeding risk (NeoBRis) index. Thromb Haemost 2021; 121 (09) 1263-1266
  • 45 Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr 1978; 92 (04) 529-534
  • 46 van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol 2014; 14 (01) 137
  • 47 Joseph V. Neurology of the Newborn. 5th ed. New York, NY:: Saunders Elsevier; 2008
  • 48 Volpe JJ. Volpe's Neurology of the Newborn. 6th ed. Philadelphia, PA: Elsevier;; 2018
  • 49 Nellis ME, Levasseur J, Stribling J. et al. Bleeding scales applicable to critically ill children: a systematic review. Pediatr Crit Care Med 2019; 20 (07) 603-607
  • 50 Gianola S, Castellini G, Biffi A. et al; Italian National Institute of Health Guideline Working Group. Accuracy of risk tools to predict critical bleeding in major trauma: a systematic review with meta-analysis. J Trauma Acute Care Surg 2022; 92 (06) 1086-1096
  • 51 Rodeghiero F, Tosetto A, Abshire T. et al; ISTH/SSC joint VWF and Perinatal/Pediatric Hemostasis Subcommittees Working Group. ISTH/SSC bleeding assessment tool: a standardized questionnaire and a proposal for a new bleeding score for inherited bleeding disorders. J Thromb Haemost 2010; 8 (09) 2063-2065
  • 52 Pelliccia F, Gragnano F, Pasceri V, Cesaro A, Zimarino M, Calabrò P. Risk scores of bleeding complications in patients on dual antiplatelet therapy: how to optimize identification of patients at risk of bleeding after percutaneous coronary intervention. J Clin Med 2022; 11 (13) 3574
  • 53 Garvey AA, Walsh BH, Inder TE. Pathogenesis and prevention of intraventricular hemorrhage. Semin Perinatol 2022; 46 (05) 151592
  • 54 Levene MI, de Vries L. Extension of neonatal intraventricular haemorrhage. Arch Dis Child 1984; 59 (07) 631-636
  • 55 Richardson DK, Tarnow-Mordi WO, Escobar GJ. Neonatal risk scoring systems. Can they predict mortality and morbidity?. Clin Perinatol 1998; 25 (03) 591-611
  • 56 Pollack MM, Patel KM, Ruttimann U, Cuerdon T. Frequency of variable measurement in 16 pediatric intensive care units: influence on accuracy and potential for bias in severity of illness assessment. Crit Care Med 1996; 24 (01) 74-77
  • 57 Grevsen AK, Hviid CVB, Hansen AK, Hvas AM. The role of platelets in premature neonates with intraventricular hemorrhage: a systematic review and meta-analysis. Semin Thromb Hemost 2020; 46 (03) 366-378
  • 58 Andrew M, Castle V, Saigal S, Carter C, Kelton JG. Clinical impact of neonatal thrombocytopenia. J Pediatr 1987; 110 (03) 457-464
  • 59 von Lindern JS, Hulzebos CV, Bos AF, Brand A, Walther FJ, Lopriore E. Thrombocytopaenia and intraventricular haemorrhage in very premature infants: a tale of two cities. Arch Dis Child Fetal Neonatal Ed 2012; 97 (05) F348-F352
  • 60 Rastogi S, Olmez I, Bhutada A, Rastogi D. Drop in platelet counts in extremely preterm neonates and its association with clinical outcomes. J Pediatr Hematol Oncol 2011; 33 (08) 580-584
  • 61 Stanworth SJ, Clarke P, Watts T. et al; Platelets and Neonatal Transfusion Study Group. Prospective, observational study of outcomes in neonates with severe thrombocytopenia. Pediatrics 2009; 124 (05) e826-e834
  • 62 von Lindern JS, van den Bruele T, Lopriore E, Walther FJ. Thrombocytopenia in neonates and the risk of intraventricular hemorrhage: a retrospective cohort study. BMC Pediatr 2011; 11: 16
  • 63 Konstantinidi A, Sokou R, Parastatidou S. et al. Clinical application of thromboelastography/thromboelastometry (TEG/TEM) in the neonatal population: a narrative review. Semin Thromb Hemost 2019; 45 (05) 449-457
  • 64 Crochemore T, Piza FMT, Rodrigues RDR, Guerra JCC, Ferraz LJR, Corrêa TD. A new era of thromboelastometry. Einstein (Sao Paulo) 2017; 15 (03) 380-385
  • 65 Wikkelsø A, Wetterslev J, Møller AM, Afshari A. Thromboelastography (TEG) or thromboelastometry (ROTEM) to monitor haemostatic treatment versus usual care in adults or children with bleeding. Cochrane Database Syst Rev 2016; 2016 (08) CD007871
  • 66 Sokou R, Georgiadou P, Tsantes AG. et al. The utility of NATEM assay in predicting bleeding risk in critically ill neonates. Semin Thromb Hemost 2023; 49 (02) 182-191
  • 67 Parastatidou S, Sokou R, Tsantes AG. et al. The role of ROTEM variables based on clot elasticity and platelet component in predicting bleeding risk in thrombocytopenic critically ill neonates. Eur J Haematol 2021; 106 (02) 175-183
  • 68 Sokou R, Ioakeimidis G, Piovani D. et al. Development and validation of a sepsis diagnostic scoring model for neonates with suspected sepsis. Front Pediatr 2022; 10: 1004727
  • 69 Sokou R, Tsantes AG, Konstantinidi A. et al. Rotational thromboelastometry in neonates admitted to a neonatal intensive care unit: a large cross-sectional study. Semin Thromb Hemost 2021; 47 (07) 875-884
  • 70 Sokou R, Tsantes AG, Lampridou M. et al. Thromboelastometry and prediction of in-hospital mortality in neonates with sepsis. Int J Lab Hematol 2023
  • 71 Andreucci VE. Acute Renal Failure. Boston, MA:: Springer; 1984
  • 72 Agarwal B, Gatt A, Riddell A. et al. Hemostasis in patients with acute kidney injury secondary to acute liver failure. Kidney Int 2013; 84 (01) 158-163
  • 73 Stoops C, Boohaker L, Sims B, Griffin R, Selewski DT, Askenazi D. on behalf of the National Kidney Collaborative (NKC). The Association of Intraventricular Hemorrhage and Acute Kidney Injury in Premature Infants from the Assessment of the Worldwide Acute Kidney Injury Epidemiology in Neonates (AWAKEN) Study. Neonatology 2019; 116 (04) 321-330
  • 74 Adcock B, Carpenter S, Bauer J. et al. Acute kidney injury, fluid balance and risks of intraventricular hemorrhage in premature infants. J Perinatol 2020; 40 (09) 1296-1300
  • 75 Whitcomb BW, Schisterman EF, Perkins NJ, Platt RW. Quantification of collider-stratification bias and the birthweight paradox. Paediatr Perinat Epidemiol 2009; 23 (05) 394-402
  • 76 Sinclair JC. Weighing risks and benefits in treating the individual patient. Clin Perinatol 2003; 30 (02) 251-268
  • 77 Riley RD, Ensor J, Snell KIE. et al. Calculating the sample size required for developing a clinical prediction model. BMJ 2020; 368: m441