Semin intervent Radiol 2023; 40(06): 497-504
DOI: 10.1055/s-0043-1777844
Review Article

Non-Thermal Liver Ablation: Existing and New Technology

Tiffany Nakla*
1   College of Osteopathic Medicine, Touro University Nevada, Henderson, Nevada
,
Jacqueline J. Chow*
2   School of Medicine, University of California, Irvine, Irvine, California
,
Kathleen Pham
3   Department of Radiological Sciences, University of California, Irvine, Irvine, California
,
Nadine Abi-Jaoudeh
3   Department of Radiological Sciences, University of California, Irvine, Irvine, California
› Author Affiliations

Abstract

Cancer has and continues to be a complex health crisis plaguing millions around the world. Alcohol ablation was one of the initial methods used for the treatment of liver lesions. It was surpassed by thermal ablation which has played a big role in the therapeutic arsenal for primary and metastatic liver tumors. However, thermal ablation has several shortcomings and limitations that prompted the development of alternative technologies including electroporation and histotripsy. Percutaneous alcohol injection in the liver lesion leads to dehydration and coagulative necrosis. This technology is limited to the lesion with relative sparing of the surrounding tissue, making it safe to use adjacent to sensitive structures. Electroporation utilizes short high-voltage pulses to permeabilize the cell membrane and can result in cell death dependent on the threshold reached. It can effectively target the tumor margins and has lower damage rates to surrounding structures due to the short pulse duration. Histotripsy is a novel technology, and although the first human trial was just completed, its results are encouraging, given the sharp demarcation of the targeted tissue, lack of thermal damage, and potential for immunomodulation of the tumor microenvironment. Herein, we discuss these techniques, their uses, and overall clinical benefit.

* Contributed equally.




Publication History

Article published online:
24 January 2024

© 2023. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Angelini M, Teglia F, Astolfi L, Casolari G, Boffetta P. Decrease of cancer diagnosis during COVID-19 pandemic: a systematic review and meta-analysis. Eur J Epidemiol 2023; 38 (01) 31-38
  • 2 Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023; 73 (01) 17-48
  • 3 Sun E, Jena AB, Lakdawalla D, Reyes C, Philipson TJ, Goldman D. The contributions of improved therapy and earlier detection to cancer survival gains, 1988–2000. Forum Health Econ Policy 2010; 13 (02)
  • 4 Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet 2018; 391 (10127): 1301-1314
  • 5 Llovet JM, Ricci S, Mazzaferro V. et al; SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359 (04) 378-390
  • 6 El-Khoueiry AB, Sangro B, Yau T. et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017; 389 (10088): 2492-2502
  • 7 Bruix J, Reig M, Sherman M. Evidence-based diagnosis, staging, and treatment of patients with hepatocellular carcinoma. Gastroenterology 2016; 150 (04) 835-853
  • 8 Künzli BM, Abitabile P, Maurer CA. Radiofrequency ablation of liver tumors: actual limitations and potential solutions in the future. World J Hepatol 2011; 3 (01) 8-14
  • 9 Heimbach JK, Kulik LM, Finn RS. et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018; 67 (01) 358-380
  • 10 Ebara M, Okabe S, Kita K. et al. Percutaneous ethanol injection for small hepatocellular carcinoma: therapeutic efficacy based on 20-year observation. J Hepatol 2005; 43 (03) 458-464
  • 11 Wang L, Liu BX, Long HY. Ablative strategies for recurrent hepatocellular carcinoma. World J Hepatol 2023; 15 (04) 515-524
  • 12 Giovannini M. Percutaneous alcohol ablation for liver metastasis. Semin Oncol 2002; 29 (02) 192-195
  • 13 Li X, Deng X, Luo X. et al. Alcohol remodels the immunosuppressive tumor microenvironment by targeting myeloid-derived suppressor cells. Am J Cancer Res 2023; 13 (05) 1786-1805
  • 14 Chen MS, Li JQ, Zheng Y. et al. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann Surg 2006; 243 (03) 321-328
  • 15 Chami P, Jarnagin W, Abou-Alfa GK. et al. Non-surgical locoregional therapies alone or in combination with systemic therapy in patients with hepatocellular carcinoma. Cancers (Basel) 2023; 15 (06) 1748
  • 16 Ansari D, Andersson R. Radiofrequency ablation or percutaneous ethanol injection for the treatment of liver tumors. World J Gastroenterol 2012; 18 (10) 1003-1008
  • 17 Lencioni RA, Allgaier HP, Cioni D. et al. Small hepatocellular carcinoma in cirrhosis: randomized comparison of radio-frequency thermal ablation versus percutaneous ethanol injection. Radiology 2003; 228 (01) 235-240
  • 18 Livraghi T, Giorgio A, Marin G. et al. Hepatocellular carcinoma and cirrhosis in 746 patients: long-term results of percutaneous ethanol injection. Radiology 1995; 197 (01) 101-108
  • 19 Orlando A, Leandro G, Olivo M, Andriulli A, Cottone M. Radiofrequency thermal ablation vs. percutaneous ethanol injection for small hepatocellular carcinoma in cirrhosis: meta-analysis of randomized controlled trials. Am J Gastroenterol 2009; 104 (02) 514-524
  • 20 Liang YC, Li ZY, Yang JZ, Lin J, Li ZY, Ke X. . Transcatheter arterial chemoembolisation combined with CT guided percutaneous intratumor ethanol injection for liver metastases. Zhongguo Jieru Yingxiang Yu Zhiliaoxue 2007; 4 (01) 49-51
  • 21 Chen L, Zhang W, Sun T. et al. Effect of transarterial chemoembolization plus percutaneous ethanol injection or radiofrequency ablation for liver tumors. J Hepatocell Carcinoma 2022; 9: 783-797
  • 22 Lazzarotto-da-Silva G, Grezzana-Filho TJM, Scaffaro LA. et al. Percutaneous ethanol injection is an acceptable bridging therapy to hepatocellular carcinoma prior to liver transplantation. Langenbecks Arch Surg 2023; 408 (01) 26
  • 23 Liu M, Li XJ, Zhang XE, Kuang M, Xie XY, Huang GL. Long-term outcomes of combined radiofrequency ablation and multipronged ethanol ablation for the treatment of unfavorable hepatocellular carcinoma. Diagn Interv Radiol 2023; 29 (02) 342-349
  • 24 Yu SCH, Hui JWY, Li L. et al. Comparison of chemoembolization, radioembolization, and transarterial ethanol ablation for huge hepatocellular carcinoma (≥ 10 cm) in tumour response and long-term survival outcome. Cardiovasc Intervent Radiol 2022; 45 (02) 172-181
  • 25 Wang Q, Chen S, Yan J. et al. Rescue radiofrequency ablation or percutaneous ethanol injection: a strategy for failed RALPPS stage-1 in patients with cirrhosis-related hepatocellular carcinoma. BMC Surg 2021; 21 (01) 246
  • 26 Lu DE, Cheng SW, Lin YS. et al. Combination of radiofrequency ablation and percutaneous ethanol injection versus radiofrequency ablation alone for hepatocellular carcinoma: a systematic review and meta-analysis. Ann Hepatol 2022; 27 (05) 100729
  • 27 Yang P, Li N. Efficacy of percutaneous ethanol injection versus radiofrequency ablation for single hepatocellular carcinoma no larger than 5 cm. J Int Med Res 2022; 50 (07) 3000605221111281
  • 28 Yu SCH, Hui JWY, Chong CCN. et al. Transarterial ethanol ablation for small hepatocellular carcinoma (≤ 3 cm): a comparative study versus radiofrequency ablation. Cardiovasc Intervent Radiol 2020; 43 (05) 732-739
  • 29 Morhard R, Mueller JL, Tang Q. et al. Understanding factors governing distribution volume of ethyl cellulose-ethanol to optimize ablative therapy in the liver. IEEE Trans Biomed Eng 2020; 67 (08) 2337-2348
  • 30 Chelales E, Morhard R, Nief C. et al. Radiologic-pathologic analysis of increased ethanol localization and ablative extent achieved by ethyl cellulose. Sci Rep 2021; 11 (01) 20700
  • 31 Meng ZW, Cai XR, Lin CZ, Chen YL, Liu S. The Islanding effect - a special method of percutaneous peritumor ethanol injection for hepatocellular carcinoma: 15-year follow-up outcome. Medicine (Baltimore) 2021; 100 (03) e24365
  • 32 Mir LM. Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry 2001; 53 (01) 1-10
  • 33 Mir LM, Moller PH, André F, Gehl J. Electric pulse-mediated gene delivery to various animal tissues. Adv Genet 2005; 54: 83-114
  • 34 Yang Z, Shi J, Xie J. et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng 2020; 4 (01) 69-83 [published correction appears in Nat Biomed Eng 2021;5(8):944–945]
  • 35 Orlowski S, Belehradek Jr J, Paoletti C, Mir LM. Transient electropermeabilization of cells in culture. Increase of the cytotoxicity of anticancer drugs. Biochem Pharmacol 1988; 37 (24) 4727-4733
  • 36 Zhou L, Yin S, Chai W. et al. Irreversible electroporation in patients with liver tumours: treated-area patterns with contrast-enhanced ultrasound. World J Surg Oncol 2020; 18 (01) 305
  • 37 Davalos RV, Mir IL, Rubinsky B. Tissue ablation with irreversible electroporation. Ann Biomed Eng 2005; 33 (02) 223-231
  • 38 Arena CB, Sano MB, Rossmeisl Jr JH. et al. High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. Biomed Eng Online 2011; 10 (01) 102
  • 39 Zhang N, Li Z, Han X. et al. Irreversible electroporation: an emerging immunomodulatory therapy on solid tumors. Front Immunol 2022; 12: 811726
  • 40 Al-Sakere B, André F, Bernat C. et al. Tumor ablation with irreversible electroporation. PLoS One 2007; 2 (11) e1135
  • 41 Thomson KR, Kavnoudias H, Neal II RE. Introduction to irreversible electroporation – principles and techniques. Tech Vasc Interv Radiol 2015; 18 (03) 128-134
  • 42 Yun JH, Fang A, Khorshidi F. et al. New developments in image-guided percutaneous irreversible electroporation of solid tumors. Curr Oncol Rep 2023; 25 (11) 1213-1226
  • 43 Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng 2006; 53 (07) 1409-1415
  • 44 Rubinsky B, Onik G, Mikus P. Irreversible electroporation: a new ablation modality – clinical implications. Technol Cancer Res Treat 2007; 6 (01) 37-48
  • 45 Lee EW, Loh CT, Kee ST. Imaging guided percutaneous irreversible electroporation: ultrasound and immunohistological correlation. Technol Cancer Res Treat 2007; 6 (04) 287-294
  • 46 Bower M, Sherwood L, Li Y, Martin R. Irreversible electroporation of the pancreas: definitive local therapy without systemic effects. J Surg Oncol 2011; 104 (01) 22-28
  • 47 Tracy CR, Kabbani W, Cadeddu JA. Irreversible electroporation (IRE): a novel method for renal tissue ablation. BJU Int 2011; 107 (12) 1982-1987
  • 48 Deodhar A, Monette S, Single Jr GW. et al. Renal tissue ablation with irreversible electroporation: preliminary results in a porcine model. Urology 2011; 77 (03) 754-760
  • 49 Onik G, Mikus P, Rubinsky B. Irreversible electroporation: implications for prostate ablation. Technol Cancer Res Treat 2007; 6 (04) 295-300
  • 50 CTG Labs - NCBI. clinicaltrials.gov. Accessed November 13, 2023 at: https://clinicaltrials.gov/search?cond=Cancer&intr=Irreversible%20electroporation
  • 51 Gupta P, Maralakunte M, Sagar S. et al. Efficacy and safety of irreversible electroporation for malignant liver tumors: a systematic review and meta-analysis. Eur Radiol 2021; 31 (09) 6511-6521
  • 52 Yu M, Li S. Irreversible electroporation for liver cancer ablation: a meta analysis. Eur J Surg Oncol 2022; 48 (06) 1321-1330
  • 53 Freeman E, Cheung W, Kavnoudias H, Majeed A, Kemp W, Roberts SK. Irreversible electroporation for hepatocellular carcinoma: longer-term outcomes at a single centre. Cardiovasc Intervent Radiol 2021; 44 (02) 247-253
  • 54 Verloh N, Jensch I, Lürken L. et al. Similar complication rates for irreversible electroporation and thermal ablation in patients with hepatocellular tumors. Radiol Oncol 2019; 53 (01) 116-122
  • 55 Galvanize Therapeutics, Inc.. Aliya System. Accessed November 13, 2023 at: https://galvanizetx.com/aliya-system
  • 56 Gudvangen E, Kim V, Novickij V, Battista F, Pakhomov AG. Electroporation and cell killing by milli- to nanosecond pulses and avoiding neuromuscular stimulation in cancer ablation. Sci Rep 2022; 12 (01) 1763
  • 57 Pulsed electric field activates immune system better than radiofrequency ablation. IR Quarterly. Published March 5, 2023. Accessed November 13, 2023 at: https://irq.sirweb.org/sirtoday/PEF-activaties-immune#:∼:text=Local%20delivery%20of%20pulsed%20electric
  • 58 Galvanize Therapeutics, Inc.. A Clinical Evaluation of the Aliya™ System in Late Stage Cancer (INCITE LS). ClinicalTrials.gov identifier: NCT04773275. Updated 14 March 2023. Accessed November 13, 2013 at: https://clinicaltrials.gov/study/NCT04773275
  • 59 Xu M, Xu D, Dong G. et al. The safety and efficacy of nanosecond pulsed electric field in patients with hepatocellular carcinoma: a prospective phase 1 clinical study protocol. Front Oncol 2022; 12: 869316
  • 60 Xu Z, Ludomirsky A, Eun LY. et al. Controlled ultrasound tissue erosion. IEEE Trans Ultrason Ferroelectr Freq Control 2004; 51 (06) 726-736
  • 61 Vlaisavljevich E, Lin KW, Maxwell A. et al. Effects of ultrasound frequency and tissue stiffness on the histotripsy intrinsic threshold for cavitation. Ultrasound Med Biol 2015; 41 (06) 1651-1667
  • 62 Maloney E, Hwang JH. Emerging HIFU applications in cancer therapy. Int J Hyperthermia 2015; 31 (03) 302-309
  • 63 Pahk KJ, Shin CH, Bae IY. et al. Boiling histotripsy-induced partial mechanical ablation modulates tumour microenvironment by promoting immunogenic cell death of cancers. Sci Rep 2019; 9 (01) 9050
  • 64 Cheung TT, Chu FSK, Jenkins CR. et al. Tolerance of high-intensity focused ultrasound ablation in patients with hepatocellular carcinoma. World J Surg 2012; 36 (10) 2420-2427
  • 65 Williams RP, Simon JC, Khokhlova VA, Sapozhnikov OA, Khokhlova TD. The histotripsy spectrum: differences and similarities in techniques and instrumentation. Int J Hyperthermia 2023; 40 (01) 2233720
  • 66 Ponomarchuk EM, Rosnitskiy PB, Khokhlova TD. et al. Ultrastructural analysis of volumetric histotripsy bio-effects in large human hematomas. Ultrasound Med Biol 2021; 47 (09) 2608-2621
  • 67 Vlaisavljevich E, Kim Y, Allen S. et al. Image-guided non-invasive ultrasound liver ablation using histotripsy: feasibility study in an in vivo porcine model. Ultrasound Med Biol 2013; 39 (08) 1398-1409
  • 68 Kim Y, Vlaisavljevich E, Owens GE, Allen SP, Cain CA, Xu Z. In vivo transcostal histotripsy therapy without aberration correction. Phys Med Biol 2014; 59 (11) 2553-2568
  • 69 Vlaisavljevich E, Greve J, Cheng X. et al. Non-invasive ultrasound liver ablation using histotripsy: chronic study in an in vivo rodent model. Ultrasound Med Biol 2016; 42 (08) 1890-1902
  • 70 Lundt JE, Allen SP, Shi J, Hall TL, Cain CA, Xu Z. Non-invasive, rapid ablation of tissue volume using histotripsy. Ultrasound Med Biol 2017; 43 (12) 2834-2847
  • 71 Qu S, Worlikar T, Felsted AE. et al. Non-thermal histotripsy tumor ablation promotes abscopal immune responses that enhance cancer immunotherapy. J Immunother Cancer 2020; 8 (01) e000200
  • 72 Chu KF, Dupuy DE. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer 2014; 14 (03) 199-208
  • 73 Khokhlova VA, Fowlkes JB, Roberts WW. et al. Histotripsy methods in mechanical disintegration of tissue: towards clinical applications. Int J Hyperthermia 2015; 31 (02) 145-162
  • 74 Vidal-Jove J, Serres X, Vlaisavljevich E. et al. First-in-man histotripsy of hepatic tumors: the THERESA trial, a feasibility study. Int J Hyperthermia 2022; 39 (01) 1115-1123
  • 75 Unknown. FDA Awards HistoSonics Clearance of its First-of-a-Kind Edison® Histotripsy System. HistoSonics. Published October 9, 2023. Accessed December 7, 2023 at: https://histosonics.com/news/fda-awards-histosonics-clearance-of-its-first-of-a-kind-edison-histotripsy-system-2/
  • 76 Bouda D, Lagadec M, Alba CG. et al. Imaging review of hepatocellular carcinoma after thermal ablation: the good, the bad, and the ugly. J Magn Reson Imaging 2016; 44 (05) 1070-1090
  • 77 Imran KM, Ganguly A, Paul T. et al. Magic bubbles: utilizing histotripsy to modulate the tumor microenvironment and improve systemic anti-tumor immune responses. Int J Hyperthermia 2023; 40 (01) 2244206