Semin Thromb Hemost
DOI: 10.1055/s-0044-1788898
Review Article

Clinical, Laboratory, and Molecular Aspects of Congenital Fibrinogen Disorders

Alessandro Casini
1   Division of Angiology and Hemostasis, University Hospitals of Geneva, Geneva, Switzerland
,
Philippe de Moerloose
2   Department of Medicine, University of Geneva, Geneva, Switzerland
,
Marguerite Neerman-Arbez
3   Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
› Author Affiliations

Abstract

Congenital fibrinogen disorders (CFDs) include afibrinogenemia, hypofibrinogenemia, dysfibrinogenemia, and hypodysfibrinogenemia. The fibrinogen levels, the clinical features, and the genotype define several sub-types, each with specific biological and clinical issues. The diagnosis of CFDs is based on the measurement of activity and antigen fibrinogen levels as well as on the genotype. While relatively easy in quantitative fibrinogen disorders, the diagnosis can be more challenging in qualitative fibrinogen disorders depending on the reagents and methods used, and the underlying fibrinogen variants. Overall, quantitative and qualitative fibrinogen defects lead to a decrease in clottability, and usually in a bleeding tendency. The severity of the bleeding phenotype is moreover related to the concentration of fibrinogen. Paradoxically, patients with CFDs are also at risk of thrombotic events. The impact of the causative mutation on the structure and the fibrinogen level is one of the determinants of the thrombotic profile. Given the major role of fibrinogen in pregnancy, women with CFDs are particularly at risk of obstetrical adverse outcomes. The study of the fibrin clot properties can help to define the impact of fibrinogen disorders on the fibrin network. The development of next generation sequencing now allows the identification of genetic modifiers able to influence the global hemostasis balance in CFDs. Their integration in the assessment of the patient risk on an individual scale is an important step toward precision medicine in patients with such a heterogeneous clinical course.



Publication History

Article published online:
16 August 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Neerman-Arbez M, de Moerloose P, Casini A. Laboratory and genetic investigation of mutations accounting for congenital fibrinogen disorders. Semin Thromb Hemost 2016; 42 (04) 356-365
  • 2 Palla R, Peyvandi F, Shapiro AD. Rare bleeding disorders: diagnosis and treatment. Blood 2015; 125 (13) 2052-2061
  • 3 Casini A, Neerman-Arbez M, Ariëns RA, de Moerloose P. Dysfibrinogenemia: from molecular anomalies to clinical manifestations and management. J Thromb Haemost 2015; 13 (06) 909-919
  • 4 Richard M, Celeny D, Neerman-Arbez M. Mutations accounting for congenital fibrinogen disorders: an update. Semin Thromb Hemost 2022; 48 (08) 889-903
  • 5 Casini A, Undas A, Palla R, Thachil J, de Moerloose P. Subcommittee on Factor XIII and Fibrinogen. Diagnosis and classification of congenital fibrinogen disorders: communication from the SSC of the ISTH. J Thromb Haemost 2018; 16 (09) 1887-1890
  • 6 Casini A, de Moerloose P, Neerman-Arbez M. Clinical features and management of congenital fibrinogen deficiencies. Semin Thromb Hemost 2016; 42 (04) 366-374
  • 7 Casini A, de Moerloose P. How I treat dysfibrinogenemia. Blood 2021; 138 (21) 2021-2030
  • 8 Shapiro A. The use of prophylaxis in the treatment of rare bleeding disorders. Thromb Res 2020; 196: 590-602
  • 9 Casini A, Neerman-Arbez M, de Moerloose P. Heterogeneity of congenital afibrinogenemia, from epidemiology to clinical consequences and management. Blood Rev 2021; 48: 100793
  • 10 Khan I, Chow M, Chandra S, Hiatt M. A case report of congenital afibrinogenemia and literature review of management of post-circumcision bleeding. Cureus 2023; 15 (03) e36459
  • 11 Dyer E, Cahill B. Problem-solving in clinical practice: a baby who won't stop bleeding. Arch Dis Child Educ Pract Ed 2018; 103 (06) 321-326
  • 12 Casini A, von Mackensen S, Santoro C. et al; QualyAfib Study Group. Clinical phenotype, fibrinogen supplementation, and health-related quality of life in patients with afibrinogenemia. Blood 2021; 137 (22) 3127-3136
  • 13 Hadjali-Saichi S, de Mazancourt P, Tapon-Bretaudière J. et al. Clinical, biological, and genetic features in an afibrinogenemia patient series in Algeria. Haemophilia 2022; 28 (05) 822-831
  • 14 Mohsenian S, Seidizadeh O, Mirakhorli M, Jazebi M, Azarkeivan A. Clinical and molecular characterization of Iranian patients with congenital fibrinogen disorders. Transfus Apheresis Sci 2021; 60 (06) 103203
  • 15 Maas DPMSM, Saes JL, Blijlevens NMA. et al; RBiN study group. Treatment of patients with rare bleeding disorders in the Netherlands: real-life data from the RBiN study. J Thromb Haemost 2022; 20 (04) 833-844
  • 16 Macrae FL, Duval C, Papareddy P. et al. A fibrin biofilm covers blood clots and protects from microbial invasion. J Clin Invest 2018; 128 (08) 3356-3368
  • 17 Kearney KJ, Ariëns RAS, Macrae FL. The role of fibrin(ogen) in wound healing and infection control. Semin Thromb Hemost 2022; 48 (02) 174-187
  • 18 Bridey F, Négrier C, Duval C, Ariëns R, de Moerloose P, Casini A. Impaired factor XIII activation in patients with congenital afibrinogenemia. Haematologica 2019; 104 (03) e111-e113
  • 19 van Meegeren ME, de Rooy JW, Schreuder HW, Brons PP. Bone cysts in patients with afibrinogenaemia: a literature review and two new cases. Haemophilia 2014; 20 (02) 244-248
  • 20 Arcagök BC, Özdemir N, Tekin A. et al. Spontaneous splenic rupture in a patient with congenital afibrinogenemia. Turk Pediatri Ars 2014; 49 (03) 247-249
  • 21 Nishihori M, Araki Y, Suzuki N. et al. Medical management of a mural thrombus inducing repeated ischemic strokes in a patient with congenital afibrinogenemia. J Stroke Cerebrovasc Dis 2022; 31 (07) 106526
  • 22 Greenblatt M, Cloutier S, Lemelin V. Portal vein thrombosis in a patient known for congenital afibrinogenemia. Haemophilia 2020; 26 (06) e331-e333
  • 23 Khayat C, Marchi R, Durual S, Lecompte T, Neerman-Arbez M, Casini A. Impact of fibrinogen infusion on thrombin generation and fibrin clot structure in patients with inherited afibrinogenemia. Thromb Haemost 2022; 122 (09) 1461-1468
  • 24 Fish RJ, Freire C, Di Sanza C, Neerman-Arbez M. Venous thrombosis and thrombocyte activity in zebrafish models of quantitative and qualitative fibrinogen disorders. Int J Mol Sci 2021; 22 (02) 655
  • 25 Mosesson MW. Update on antithrombin I (fibrin). Thromb Haemost 2007; 98 (01) 105-108
  • 26 Korte W, Feldges A. Increased prothrombin activation in a patient with congenital afibrinogenemia is reversible by fibrinogen substitution. Clin Investig 1994; 72 (05) 396-398
  • 27 Bornikova L, Peyvandi F, Allen G, Bernstein J, Manco-Johnson MJ. Fibrinogen replacement therapy for congenital fibrinogen deficiency. J Thromb Haemost 2011; 9 (09) 1687-1704
  • 28 Korte W, Poon MC, Iorio A, Makris M. Thrombosis in inherited fibrinogen disorders. Transfus Med Hemother 2017; 44 (02) 70-76
  • 29 Solomon C, Gröner A, Ye J, Pendrak I. Safety of fibrinogen concentrate: analysis of more than 27 years of pharmacovigilance data. Thromb Haemost 2015; 113 (04) 759-771
  • 30 Négrier C, Rothschild C, Borg JY. et al. Post-authorization safety study of Clottafact®, a triply secured fibrinogen concentrate in congenital afibrinogenemia. A prospective observational study. Vox Sang 2016; 111 (04) 383-390
  • 31 Lak M, Keihani M, Elahi F, Peyvandi F, Mannucci PM. Bleeding and thrombosis in 55 patients with inherited afibrinogenaemia. Br J Haematol 1999; 107 (01) 204-206
  • 32 Zhang Y, Zuo X, Teng Y. Women with congenital hypofibrinogenemia/afibrinogenemia: from birth to death. Clin Appl Thromb Hemost 2020; 26: 1076029620912819
  • 33 Malinowski AK, Abdul-Kadir R. Planning pregnancy and birth in women with inherited bleeding disorders. Semin Thromb Hemost 2023; 49 (04) 371-381
  • 34 Saes JL, Laros-van Gorkom BAP, Coppens M, Schols SEM. Pregnancy outcome in afibrinogenemia: Are we giving enough fibrinogen concentrate? A case series. Res Pract Thromb Haemost 2020; 4 (02) 343-346
  • 35 Karimi M, Bordbar M, Aali M, Bazrafshan A, Tavoosi H, Gerdabi J. Successful delivery in an patient with afibrinogenemia after three abortions: a case report and review of the literature. Haemophilia 2018; 24 (02) e63-e66
  • 36 Oda T, Itoh H, Kawai K. et al. Three successful deliveries involving a woman with congenital afibrinogenaemia - conventional fibrinogen concentrate infusion vs. ‘as required’ fibrinogen concentrate infusion based on changes in fibrinogen clearance. Haemophilia 2016; 22 (05) e478-e481
  • 37 Lebreton A, Casini A, Alhayek R, Kouteich KL, Neerman-Arbez M, de Moerloose P. Successful pregnancy under fibrinogen substitution in a woman with congenital afibrinogenaemia complicated by a postpartum venous thrombosis. Haemophilia 2015; 21 (01) e108-e110
  • 38 Paraboschi EM, Duga S, Asselta R. Fibrinogen as a pleiotropic protein causing human diseases: the mutational burden of Aα, Bβ, and γ chains. Int J Mol Sci 2017; 18 (12) 2711
  • 39 Undas A. Determination of fibrinogen and thrombin time (TT). Methods Mol Biol 2017; 1646: 105-110
  • 40 Mackie I, Casini A, Pieters M. et al. International council for standardisation in haematology recommendations on fibrinogen assays, thrombin clotting time and related tests in the investigation of bleeding disorders. Int J Lab Hematol 2023; 46 (01) 20-32
  • 41 Skornova I, Simurda T, Stasko J. et al. Use of fibrinogen determination methods in differential diagnosis of hypofibrinogenemia and dysfibrinogenemia. Clin Lab 2021; 67 (04) 1028-1034
  • 42 Suzuki A, Suzuki N, Kanematsu T. et al. Clot waveform analysis in Clauss fibrinogen assay contributes to classification of fibrinogen disorders. Thromb Res 2019; 174: 98-103
  • 43 Mohsenian S, Palla R, Menegatti M. et al. OC 75.3 phenotype and genotype characterization of patients with congenital fibrinogen deficiencies: a retrospective analysis of the PRO-RBDD database. Res Pract Thromb Haemost 2024; 8 (06) 1392-1404
  • 44 Peyvandi F, Palla R, Menegatti M. et al; European Network of Rare Bleeding Disorders Group. Coagulation factor activity and clinical bleeding severity in rare bleeding disorders: results from the European Network of Rare Bleeding Disorders. J Thromb Haemost 2012; 10 (04) 615-621
  • 45 Saes JL, Verhagen MJA, Meijer K. et al. Bleeding severity in patients with rare bleeding disorders: real-life data from the RBiN study. Blood Adv 2020; 4 (20) 5025-5034
  • 46 Simurda T, Vilar R, Zolkova J. et al. A novel nonsense mutation in FGB (c.1421G>A; p.Trp474Ter) in the beta chain of fibrinogen causing hypofibrinogenemia with bleeding phenotype. Biomedicines 2020; 8 (12) 605
  • 47 Sucker C, Geisen C, Litmathe J, Schmitt U. Concomitant hypofibrinogenemia and factor XI deficiency as rare cause of bleeding during urgent dentistry: case report and short review of the literature. Arch Clin Cases 2023; 10 (02) 110-113
  • 48 Brunclikova M, Simurda T, Zolkova J. et al. Heterogeneity of genotype-phenotype in congenital hypofibrinogenemia-a review of case reports associated with bleeding and thrombosis. J Clin Med 2022; 11 (04) 1083
  • 49 Ceznerová E, Kaufmanová J, Stikarová J. et al. Thrombosis-associated hypofibrinogenemia: novel abnormal fibrinogen variant FGG c.8G>A with oxidative posttranslational modifications. Blood Coagul Fibrinolysis 2022; 33 (04) 228-237
  • 50 Guglielmone HA, Bastos L, Jarchum GD, Alvarez-Bollea MA. Recurrent superficial venous thrombophlebitis because of mutations in the protein C and fibrinogen genes in a young Argentinian female. Blood Coagul Fibrinolysis 2019; 30 (02) 80-84
  • 51 Callea F, Giovannoni I, Sari S. et al. Fibrinogen gamma chain mutations provoke fibrinogen and apolipoprotein B plasma deficiency and liver storage. Int J Mol Sci 2017; 18 (12) 2717
  • 52 Burcu G, Bellacchio E, Sag E. et al. Structural characteristics in the γ chain variants associated with fibrinogen storage disease suggest the underlying pathogenic mechanism. Int J Mol Sci 2020; 21 (14) 5139
  • 53 Asselta R, Paraboschi EM, Duga S. Hereditary hypofibrinogenemia with hepatic storage. Int J Mol Sci 2020; 21 (21) 7830
  • 54 Hugon-Rodin J, Carrière C, Claeyssens S. et al. Obstetrical complications in hereditary fibrinogen disorders: the Fibrinogest study. J Thromb Haemost 2023; 21 (08) 2126-2136
  • 55 Marchi R, Durual S, Pecheux O, Neerman-Arbez M, Casini A. Physiological correction of hereditary mild hypofibrinogenemia during pregnancy. Haemophilia 2023; 29 (03) 836-843
  • 56 Jennings I, Kitchen S, Menegatti M. et al. Potential misdiagnosis of dysfibrinogenaemia: Data from multicentre studies amongst UK NEQAS and PRO-RBDD project laboratories. Int J Lab Hematol 2017; 39 (06) 653-662
  • 57 Vasse M, Francois D, Van Dreden P, de Mazancourt P. Different sensitivity of von Clauss reagents for the diagnosis of dysfibrinogenemia. Eur J Haematol 2020; 104 (01) 70-71
  • 58 Marin MJ, Mathew CM, Rajasekhar A. et al. Dysfibrinogenemia: discrepant results following infusion of purified fibrinogen. Blood Coagul Fibrinolysis 2023; 34 (05) 337-344
  • 59 Leung B, Beggs J, Mason J. Fibrinogen Longmont: A clinically heterogeneous dysfibrinogenemia with discrepant fibrinogen results influenced by clot detection method and reagent. TH Open 2022; 6 (01) e18-e20
  • 60 Li Y, Ding B, Wang X, Ding Q. Congenital (hypo-)dysfibrinogenemia and bleeding: a systematic literature review. Thromb Res 2022; 217: 36-47
  • 61 Casini A, Blondon M, Lebreton A. et al. Natural history of patients with congenital dysfibrinogenemia. Blood 2015; 125 (03) 553-561
  • 62 Zhou J, Ding Q, Chen Y. et al. Clinical features and molecular basis of 102 Chinese patients with congenital dysfibrinogenemia. Blood Cells Mol Dis 2015; 55 (04) 308-315
  • 63 Zhou P, Yu M, Peng Y, Ma P, Wan L. Identification and characterization of novel mutations in Chinese patients with congenital fibrinogen disorders. Blood Cells Mol Dis 2021; 86: 102489
  • 64 Smith N, Bornikova L, Noetzli L. et al. Identification and characterization of novel mutations implicated in congenital fibrinogen disorders. Res Pract Thromb Haemost 2018; 2 (04) 800-811
  • 65 Castaman G, Giacomelli SH, Biasoli C, Contino L, Radossi P. Risk of bleeding and thrombosis in inherited qualitative fibrinogen disorders. Eur J Haematol 2019; 103 (04) 379-384
  • 66 Wypasek E, Klukowska A, Zdziarska J. et al. Genetic and clinical characterization of congenital fibrinogen disorders in Polish patients: Identification of three novel fibrinogen gamma chain mutations. Thromb Res 2019; 182: 133-140
  • 67 Simurda T, Zolkova J, Kolkova Z. et al. Comparison of clinical phenotype with genetic and laboratory results in 31 patients with congenital dysfibrinogenemia in northern Slovakia. Int J Hematol 2020; 111 (06) 795-802
  • 68 Haverkate F, Samama M. Familial dysfibrinogenemia and thrombophilia. Report on a study of the SSC Subcommittee on Fibrinogen. Thromb Haemost 1995; 73 (01) 151-161
  • 69 Collet JP, Soria J, Mirshahi M. et al. Dusart syndrome: a new concept of the relationship between fibrin clot architecture and fibrin clot degradability: hypofibrinolysis related to an abnormal clot structure. Blood 1993; 82 (08) 2462-2469
  • 70 Collet JP, Woodhead JL, Soria J. et al. Fibrinogen Dusart: electron microscopy of molecules, fibers and clots, and viscoelastic properties of clots. Biophys J 1996; 70 (01) 500-510
  • 71 Soria J, Mirshahi S, Mirshahi SQ. et al. Fibrinogen αC domain: its importance in physiopathology. Res Pract Thromb Haemost 2019; 3 (02) 173-183
  • 72 Ivaškevičius V, Biswas A, Singh S. et al. Fibrinogen Bonn (p. Arg510Cys) in the Aα-chain is associated with high risk of venous thrombosis. Hamostaseologie 2023; 43 (06) 440-446
  • 73 Treliński J, Witkowski M, Chojnowski K, Neerman-Arbez M, Wypasek E, Undas A. Fibrinogen Łódź: a new cause of dysfibrinogenemia associated with recurrent thromboembolic arterial events. Pol Arch Intern Med 2019; 129 (12) 934-935
  • 74 Keinath K, Church T, Fogarty B, Sadowski B, Perkins J. Acute renal artery infarction secondary to dysfibrinogenemia. BMJ Case Rep 2017; 2017: bcr2017221375
  • 75 Langer M, Manire M, Clarkson M, Samhouri Y, Shah D, Bhagavatula R. Management of congenital dysfibrinogenemia in pregnancy: a challenging patient case. Res Pract Thromb Haemost 2021; 5 (08) e12619
  • 76 Valiton V, Hugon-Rodin J, Fontana P, Neerman-Arbez M, Casini A. Obstetrical and postpartum complications in women with hereditary fibrinogen disorders: a systematic literature review. Haemophilia 2019; 25 (05) 747-754
  • 77 Zhou W, Luo M, Yan J. et al. A novel fibrinogen gamma-chain mutation, p.Cys165Arg, causes disruption of the γ165Cys-Bβ227Cys disulfide bond and ultimately leads to hypofibrinogenemia. Thromb Res 2018; 172: 128-134
  • 78 Casini A, Brungs T, Lavenu-Bombled C, Vilar R, Neerman-Arbez M, de Moerloose P. Genetics, diagnosis and clinical features of congenital hypodysfibrinogenemia: a systematic literature review and report of a novel mutation. J Thromb Haemost 2017; 15 (05) 876-888
  • 79 Ramanan R, McFadyen JD, Perkins AC, Tran HA. Congenital fibrinogen disorders: Strengthening genotype-phenotype correlations through novel genetic diagnostic tools. Br J Haematol 2023; 203 (03) 355-368
  • 80 Ajjan R, Lim BC, Standeven KF. et al. Common variation in the C-terminal region of the fibrinogen beta-chain: effects on fibrin structure, fibrinolysis and clot rigidity. Blood 2008; 111 (02) 643-650
  • 81 Carter AM, Catto AJ, Kohler HP, Ariëns RA, Stickland MH, Grant PJ. alpha-fibrinogen Thr312Ala polymorphism and venous thromboembolism. Blood 2000; 96 (03) 1177-1179
  • 82 Bor MV, Feddersen S, Pedersen IS, Sidelmann JJ, Kristensen SR. Dysfibrinogenemia-potential impact of genotype on thrombosis or bleeding. Semin Thromb Hemost 2022; 48 (02) 161-173
  • 83 Weisel JW, Litvinov RI. Mechanisms of fibrin polymerization and clinical implications. Blood 2013; 121 (10) 1712-1719
  • 84 Marchi R, Vilar R, Durual S. et al. Fibrin clot properties to assess the bleeding phenotype in unrelated patients with hypodysfibrinogenemia due to novel fibrinogen mutations. Thromb Res 2021; 197: 56-64