Semin Thromb Hemost
DOI: 10.1055/s-0044-1800834
Review Article

Hereditary Hemorrhagic Telangiectasia: On the Brink of a New Treatment Era?

Antonio Cerrone
1   Gastroenterology Department, HHT European Reference Center, ASST Ospedale Maggiore Crema, Crema, Italy
,
Elisabetta Buscarini
1   Gastroenterology Department, HHT European Reference Center, ASST Ospedale Maggiore Crema, Crema, Italy
,
Roberto Berté
1   Gastroenterology Department, HHT European Reference Center, ASST Ospedale Maggiore Crema, Crema, Italy
,
Saverio Alicante
1   Gastroenterology Department, HHT European Reference Center, ASST Ospedale Maggiore Crema, Crema, Italy
,
Stefania Bertolazzi
1   Gastroenterology Department, HHT European Reference Center, ASST Ospedale Maggiore Crema, Crema, Italy
,
Olivia Moreschi
1   Gastroenterology Department, HHT European Reference Center, ASST Ospedale Maggiore Crema, Crema, Italy
,
Paola Griffanti
1   Gastroenterology Department, HHT European Reference Center, ASST Ospedale Maggiore Crema, Crema, Italy
,
Guido Manfredi
1   Gastroenterology Department, HHT European Reference Center, ASST Ospedale Maggiore Crema, Crema, Italy
› Author Affiliations

Abstract

Hereditary hemorrhagic telangiectasia (HHT) is an inherited vascular disorder with highly variable penetrance, affecting up to 1 in 5,000 individuals. It is characterized by the presence of abnormal blood vessels that can lead to excessive bleeding—most frequently recurrent nosebleeds (epistaxis), skin and mucosal telangiectasias (small, dilated blood vessels), as well as arteriovenous malformations (AVMs) that can form in various organs, particularly the lungs, liver, and brain. HHT is caused by loss-of-function mutations in the BMP9–10/ENG/ALK1/SMAD4 signaling pathway, an important mediator of vascular quiescence. HHT possesses significant challenges for affected individuals, as the complications can range from mild to life-threatening events, depending on the severity and location of the vascular abnormalities. Despite this bleeding disorder being not uncommon, nowadays no specific treatment is as yet available for HHT and most current therapies include repurposed drugs. The aim of this review was to show therapeutic advances on the basis of recent promising clinical trials for HHT.



Publication History

Article published online:
18 December 2024

© 2024. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 McDonald J, Bayrak-Toydemir P, Pyeritz RE. Hereditary hemorrhagic telangiectasia: an overview of diagnosis, management, and pathogenesis. Genet Med 2011; 13 (07) 607-616
  • 2 Sutton HG. Epistaxis as an indication of impaired nutrition and of degeneration of the vascular system. Med Mirror 1864; 1: 769-781
  • 3 Fuchizaki U, Miyamori H, Kitagawa S, Kaneko S, Kobayashi K. Hereditary haemorrhagic telangiectasia (Rendu-Osler-Weber disease). Lancet 2003; 362 (9394): 1490-1494
  • 4 Shovlin CL, Guttmacher AE, Buscarini E. et al. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome). Am J Med Genet 2000; 91 (01) 66-67
  • 5 Kritharis A, Al-Samkari H, Kuter DJ. Hereditary hemorrhagic telangiectasia: diagnosis and management from the hematologist's perspective. Haematologica 2018; 103 (09) 1433-1443
  • 6 Desroches-Castan A, Tillet E, Bouvard C, Bailly S. BMP9 and BMP10: two close vascular quiescence partners that stand out. Dev Dyn 2022; 251 (01) 178-197
  • 7 Klaus DJ, Gallione CJ, Anthony K. et al. Novel missense and frameshift mutations in the activin receptor-like kinase-1 gene in hereditary hemorrhagic telangiectasia. Mutations in brief no. 164. Online. Hum Mutat 1998; 12 (02) 137
  • 8 Guerrero-Esteo M, Sanchez-Elsner T, Letamendia A, Bernabeu C. Extracellular and cytoplasmic domains of endoglin interact with the transforming growth factor-beta receptors I and II. J Biol Chem 2002; 277 (32) 29197-29209
  • 9 Li DY, Sorensen LK, Brooke BS. et al. Defective angiogenesis in mice lacking endoglin. Science 1999; 284 (5419): 1534-1537
  • 10 Oh SP, Seki T, Goss KA. et al. Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A 2000; 97 (06) 2626-2631
  • 11 Massagué J. TGF-beta signal transduction. Annu Rev Biochem 1998; 67: 753-791
  • 12 McDonald J, Bayrak-Toydemir P, DeMille D, Wooderchak-Donahue W, Whitehead K. Curaçao diagnostic criteria for hereditary hemorrhagic telangiectasia is highly predictive of a pathogenic variant in ENG or ACVRL1 (HHT1 and HHT2). Genet Med 2020; 22 (07) 1201-1205
  • 13 Kühnel T, Wirsching K, Wohlgemuth W, Chavan A, Evert K, Vielsmeier V. Hereditary hemorrhagic telangiectasia. Otolaryngol Clin North Am 2018; 51 (01) 237-254
  • 14 Cole SG, Begbie ME, Wallace GM, Shovlin CL. A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5. J Med Genet 2005; 42 (07) 577-582
  • 15 Bayrak-Toydemir P, McDonald J, Akarsu N. et al. A fourth locus for hereditary hemorrhagic telangiectasia maps to chromosome 7. Am J Med Genet A 2006; 140 (20) 2155-2162
  • 16 Farhan A, Yuan F, Partan E, Weiss CR. Clinical manifestations of patients with GDF2 mutations associated with hereditary hemorrhagic telangiectasia type 5. Am J Med Genet A 2022; 188 (01) 199-209
  • 17 Shovlin CL. Hereditary haemorrhagic telangiectasia: pathophysiology, diagnosis and treatment. Blood Rev 2010; 24 (06) 203-219
  • 18 Fernández-L A, Sanz-Rodriguez F, Blanco FJ, Bernabéu C, Botella LM. Hereditary hemorrhagic telangiectasia, a vascular dysplasia affecting the TGF-beta signaling pathway. Clin Med Res 2006; 4 (01) 66-78
  • 19 Pomeraniec L, Hector-Greene M, Ehrlich M, Blobe GC, Henis YI. Regulation of TGF-β receptor hetero-oligomerization and signaling by endoglin. Mol Biol Cell 2015; 26 (17) 3117-3127
  • 20 Scharpfenecker M, van Dinther M, Liu Z. et al. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 2007; 120 (Pt 6): 964-972
  • 21 Cunha SI, Magnusson PU, Dejana E, Lampugnani MG. Deregulated TGF-β/BMP signaling in vascular malformations. Circ Res 2017; 121 (08) 981-999
  • 22 Hwan Kim Y, Vu PN, Choe SW. et al. Overexpression of activin receptor-like kinase 1 in endothelial cells suppresses development of arteriovenous malformations in mouse models of hereditary hemorrhagic telangiectasia. Circ Res 2020; 127 (09) 1122-1137
  • 23 Arthur HM, Roman BL. An update on preclinical models of hereditary haemorrhagic telangiectasia: insights into disease mechanisms. Front Med (Lausanne) 2022; 9: 973964
  • 24 Walker EJ, Su H, Shen F. et al. Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain. Stroke 2012; 43 (07) 1925-1930
  • 25 Han C, Choe S-W, Kim YH. et al. VEGF neutralization can prevent and normalize arteriovenous malformations in an animal model for hereditary hemorrhagic telangiectasia 2. Angiogenesis 2014; 17 (04) 823-830
  • 26 Bernabeu C, Bayrak-Toydemir P, McDonald J, Letarte M. Potential second-hits in hereditary hemorrhagic telangiectasia. J Clin Med 2020; 9 (11) 3571
  • 27 Geisthoff U, Nguyen HL, Lefering R, Maune S, Thangavelu K, Droege F. Trauma can induce telangiectases in hereditary hemorrhagic telangiectasia. J Clin Med 2020; 9 (05) 1507
  • 28 Braverman IM, Keh A, Jacobson BS. Ultrastructure and three-dimensional organization of the telangiectases of hereditary hemorrhagic telangiectasia. J Invest Dermatol 1990; 95 (04) 422-427
  • 29 Lesca G, Olivieri C, Burnichon N. et al; French-Italian-Rendu-Osler Network. Genotype-phenotype correlations in hereditary hemorrhagic telangiectasia: data from the French-Italian HHT network. Genet Med 2007; 9 (01) 14-22
  • 30 Donaldson JW, McKeever TM, Hall IP, Hubbard RB, Fogarty AW. Complications and mortality in hereditary hemorrhagic telangiectasia: a population-based study. Neurology 2015; 84 (18) 1886-1893
  • 31 Sabbà C, Pasculli G, Suppressa P. et al. Life expectancy in patients with hereditary haemorrhagic telangiectasia. QJM 2006; 99 (05) 327-334
  • 32 Kjeldsen AD, Vase P, Green A. Hereditary hemorrhagic telangiectasia. A population-based study on prevalence and mortality among Danish HHT patients [in Danish]. Ugeskr Laeger 2000; 162 (25) 3597-3601
  • 33 Garg N, Khunger M, Gupta A, Kumar N. Optimal management of hereditary hemorrhagic telangiectasia. J Blood Med 2014; 5: 191-206
  • 34 AAssar OS, Friedman CM, White Jr RI. AA OS. The natural history of epistaxis in hereditary hemorrhagic telangiectasia. Laryngoscope 1991; 101 (09) 977-980
  • 35 Kasthuri RS, Montifar M, Nelson J, Kim H, Lawton MT, Faughnan ME. Brain Vascular Malformation Consortium HHT Investigator Group. Prevalence and predictors of anemia in hereditary hemorrhagic telangiectasia. Am J Hematol 2017; 92 (10) 591-593
  • 36 Dupuis-Girod S, Cottin V, Shovlin CL. The lung in hereditary hemorrhagic telangiectasia. Respiration 2017; 94 (04) 315-330
  • 37 Brydon HL, Akinwunmi J, Selway R, Ul-Haq I. Brain abscesses associated with pulmonary arteriovenous malformations. Br J Neurosurg 1999; 13 (03) 265-269
  • 38 Buscarini E, Leandro G, Conte D. et al. Natural history and outcome of hepatic vascular malformations in a large cohort of patients with hereditary hemorrhagic teleangiectasia. Dig Dis Sci 2011; 56 (07) 2166-2178
  • 39 Eker OF, Boccardi E, Sure U. et al. European Reference Network for Rare Vascular Diseases (VASCERN) position statement on cerebral screening in adults and children with hereditary haemorrhagic telangiectasia (HHT). Orphanet J Rare Dis 2020; 15 (01) 165
  • 40 Manfredi G, Crinò SF, Alicante S. et al. Gastrointestinal bleeding in patients with hereditary hemorrhagic telangiectasia: Long-term results of endoscopic treatment. Endosc Int Open 2023; 11 (12) E1145-E1152
  • 41 Faughnan ME, Mager JJ, Hetts SW. et al. Second international guidelines for the diagnosis and management of hereditary hemorrhagic telangiectasia. Ann Intern Med 2020; 173 (12) 989-1001
  • 42 Flieger D, Hainke S, Fischbach W. Dramatic improvement in hereditary hemorrhagic telangiectasia after treatment with the vascular endothelial growth factor (VEGF) antagonist bevacizumab. Ann Hematol 2006; 85 (09) 631-632
  • 43 Dupuis-Girod S, Ginon I, Saurin JC. et al. Bevacizumab in patients with hereditary hemorrhagic telangiectasia and severe hepatic vascular malformations and high cardiac output. JAMA 2012; 307 (09) 948-955
  • 44 Al-Samkari H, Kasthuri RS, Parambil JG. et al. An international, multicenter study of intravenous bevacizumab for bleeding in hereditary hemorrhagic telangiectasia: the InHIBIT-Bleed study. Haematologica 2021; 106 (08) 2161-2169
  • 45 Dupuis-Girod S, Rivière S, Lavigne C. et al. Efficacy and safety of intravenous bevacizumab on severe bleeding associated with hemorrhagic hereditary telangiectasia: a national, randomized multicenter trial. J Intern Med 2023; 294 (06) 761-774
  • 46 Buscarini E, Botella LM, Geisthoff U. et al; VASCERN-HHT. Safety of thalidomide and bevacizumab in patients with hereditary hemorrhagic telangiectasia. Orphanet J Rare Dis 2019; 14 (01) 28
  • 47 Dupuis-Girod S, Shovlin CL, Kjeldsen AD. et al; ePag group. When and how to use intravenous bevacizumab in hereditary haemorrhagic telangiectasia (HHT)?. Eur J Med Genet 2022; 65 (10) 104575
  • 48 Kim YH, Kim MJ, Choe SW, Sprecher D, Lee YJ. , P Oh S. Selective effects of oral antiangiogenic tyrosine kinase inhibitors on an animal model of hereditary hemorrhagic telangiectasia. J Thromb Haemost 2017; 15 (06) 1095-1102
  • 49 Faughnan ME, Gossage JR, Chakinala MM. et al. Pazopanib may reduce bleeding in hereditary hemorrhagic telangiectasia. Angiogenesis 2019; 22 (01) 145-155
  • 50 Parambil JG, Gossage JR, McCrae KR. et al. Pazopanib for severe bleeding and transfusion-dependent anemia in hereditary hemorrhagic telangiectasia. Angiogenesis 2022; 25 (01) 87-97
  • 51 Posadas Salas MA, Srinivas TR. Update on the clinical utility of once-daily tacrolimus in the management of transplantation. Drug Des Devel Ther 2014; 8: 1183-1194
  • 52 Hessels J, Kroon S, Boerman S. et al. Efficacy and safety of tacrolimus as treatment for bleeding caused by hereditary hemorrhagic telangiectasia: an open-label, pilot study. J Clin Med 2022; 11 (18) 5280
  • 53 Álvarez-Hernández P, Patier JL, Marcos S. et al. Tacrolimus as a promising drug for epistaxis and gastrointestinal bleeding in HHT. J Clin Med 2023; 12 (23) 7410
  • 54 D'Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 1994; 91 (09) 4082-4085
  • 55 Lebrin F, Srun S, Raymond K. et al. Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat Med 2010; 16 (04) 420-428
  • 56 Invernizzi R, Quaglia F, Klersy C. et al. Efficacy and safety of thalidomide for the treatment of severe recurrent epistaxis in hereditary haemorrhagic telangiectasia: results of a non-randomised, single-centre, phase 2 study. Lancet Haematol 2015; 2 (11) e465-e473
  • 57 Al-Samkari H, Kasthuri RS, Iyer VN. et al. Pomalidomide for epistaxis in hereditary hemorrhagic telangiectasia. N Engl J Med 2024; 391 (11) 1015-1027
  • 58 ClinicalTrials.gov ID NCT05406362.