Rofo 2000; 172(10): 802-811
DOI: 10.1055/s-2000-7898
NEURORADIOLOGIE
ORIGINALARBEIT
© Georg Thieme Verlag Stuttgart · New York

Die normale Myelinisierung des kindlichen Gehirns in der MRT - eine Metaanalyse

M. Staudt1,2 , I. Krägeloh-Mann2 , W. Grodd1
  • 1Sektion experimentelle Kernspinresonanz des ZNS, Abteilung für Neuroradiologie, Radiologische Universitätsklinik
  • 2Abteilung Entwicklungsneurologie und Neuropädiatrie, Universitäts-Kinderklinik, Tübingen
Further Information

Publication History

Publication Date:
31 December 2000 (online)

Zusammenfassung.

Ziel: Ermittlung von Altersgrenzen für die MR-tomographisch erfassbare Myelinisierung des kindlichen Gehirns in T1- und T2-gewichteten Aufnahmen (T1w, T2w). Methode: Vergleich bisher publizierter Zeitangaben (Barkovich et al 1988, Grodd 1993, Hayakawa et al 1990, Hittmair et al 1994, Martin et al 1988/1990/1991, Nakagawa et al 1998, Staudt et al 1993/1994, Stricker et al 1990). Ergebnisse: Trotz deutlicher technischer und methodischer Unterschiede zwischen den einzelnen Studien konnten für die meisten Hirnregionen weitgehend übereinstimmende Zeitangaben gefunden werden. Demnach müssen im Alter von einem Monat bereits folgende Regionen in T1w und T2w myelintypisches Signal aufweisen: Medulla oblongata, Tegmentum pontis, Pedunculi cerebellares, Vermis cerebelli, Tectum mesencephali, Decussatio pedunculorum cerebelli superiorum, Thalamus, Crus posterius capsulae internae, Radiatio optica, Corona radiata. Danach sollte myelintypisches Signal in den einzelnen Hirnregionen zu folgenden Zeitpunkten erkennbar sein (M = Lebensalter in Monaten): Vorderschenkel der Capsula interna (2 M: T1w; 7 M: T2w), Splenium corporis callosi (4 M: T1w; 6 M: T2w), Genu corporis callosi (6 M: T1w; 8 M: T2w), Centrum semiovale (2 M: T1w; 7 M: T2w). Im Großhirn wird eine Aufzweigung des myelintypischen Signals in die einzelnen Gyri (= Arborisation) spätestens zu folgenden Zeitpunkten sichtbar: Okzipitallappen (5 M: T1w; 12 M: T2w) und Frontallappen (7 M: T1w; 14 M: T2w). Schlussfolgerung: Retardierungen der Myelinisierung können mit diesen übereinstimmenden Zeitangaben aus mehreren Arbeiten mit höherer Sicherheit als pathologisch gewertet werden als mit Angaben aus Einzelarbeiten.

Normal Myelination of the Child Brain on MRI - A Meta-Analysis.

Purpose: To establish age limits for the assessment of normal myelination of the brain on T1-weighted (T1w) and T2-weighted (T2w) images. Method: Comparison of previous publications (Barkovich et al. 1988, Grodd 1993, Hayakawa et al. 1990, Hittmair et al. 1994, Martin et al. 1988/1990/1991, Nakagawa et al. 1998, Staudt et al. 1993/1994, Stricker et al. 1990). Results: Despite technical and methodological differences, these studies principally agreed on the timing of myelination for most regions of the brain. Thus, a common time-table could be established: At 1 month, myelin is visible on both T1w and T2w in the medulla oblongata, tegmentum pontis, cerebellar peduncles and vermis, quadrigeminal plate, decussation of superior cerebellar peduncles, thalamus, posterior limb of internal capsule, optic radiation, corona radiata. Thereafter, the myelin-typical signal in the different regions of the brain should be present at the following ages (M = months): anterior limb of internal capsule (2 M: T1w; 7 M: T2w), splenium of corpus callosum (4 M: T1w; 6 M: T2w), genu of corpus callosum (6 M: T1w; 8 M: T2w), centrum semiovale (2 M: T1w; 7 M: T2w). Branching of myelin into the gyri of the telencephalon (= arborization) appears at the latest at: occipital lobe (5 M: T1w; 12 M: T2w) and frontal lobe (7 M: T1w; 14 M: T2w). Conclusion: These extracted age limits can be used for a more reliable assessment of myelination than the time-tables from a single study.

Literatur

  • 1 Johnson M A, Pennock J M, Bydder G M, Steiner R E, Thomas D J, Hayward R, Bryant D R, Payne J A, Levene M I, Whitelaw A . et al . Clinical NMR imaging of the brain in children: normal and neurologic disease.  AJR. 1983;  141 1005-1018
  • 2 Barkovich A J, Kjos B O, Jackson D E, Norman D. Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T.  Radiology. 1988;  166 173-180
  • 3 Grodd W. Normal and abnormal patterns of myelin development of the fetal and infantile human brain using magnetic resonance imaging.  Curr Opin Neurol Neurosurg. 1993;  6 393-397
  • 4 Grodd W. Kernspintomographie neuropädiatrischer Erkrankungen. Normale Reifung des kindlichen Gehirns.  Klin Neuroradiol. 1993;  3 13-27
  • 5 Hayakawa K, Konishi Y, Kuriyama M, Konishi K, Matsuda T. Normal brain maturation in MRI.  Eur J Rad. 1990;  12 208-215
  • 6 Hittmair K, Wimberger D, Rand T, Prayer L, Bernert G, Kramer J, Imhof H. MR assessment of brain maturation: comparison of sequences.  AJNR. 1994;  15 425-433
  • 7 Martin E, Kikinis R, Zuerrer M, Boesch C, Briner J, Kewitz G, Kaelin P. Developmental stages of the human brain: An MR study.  J Comput Assist Tomogr. 1988;  12 917-922
  • 8 Martin E, Boesch C, Zuerrer M, Kikinis R, Molinari L, Kaelin P, Boltshauser E, Duc G. MR imaging of brain maturation in normal and developmentally handicapped children.  J Comput Assist Tomogr. 1990;  14 685-692
  • 9 Martin E, Krassnitzer S, Kaelin P, Boesch C. MR imaging of the brainstem: normal postnatal development.  Neuroradiology. 1991;  33 391-395
  • 10 Nakagawa H, Iwasaki S, Kichikawa K, Fukusumi A, Taoka T, Ohishi H, Uchida H. Normal myelination of anatomic nerve fiber bundles: MR analysis.  AJNR. 1998;  19 1129-1136
  • 11 Staudt M, Schropp C, Staudt F, Obletter N, Bise K, Breit A, Weinmann H M. MRI assessment of myelination: an age standardization.  Pediatr Radiol. 1994;  24 122-127
  • 12 Staudt M, Schropp C, Staudt F, Obletter N, Bise K, Breit A. Myelination of the brain in MRI: a staging system.  Pediatr Radiol. 1993;  23 169-176
  • 13 Stricker T, Martin E, Boesch C. Development of the human cerebellum observed with high-field-strength MR imaging.  Radiology. 1990;  177 431-435
  • 14 Baierl P, Förster C, Fendel H, Naegele M, Fink U, Kenn W. Magnetic resonance imaging of normal and pathological white matter maturation.  Pediatr Radiol. 1988;  18 183-189
  • 15 Ono J, Kodaka R, Imai K, Itagaki Y, Tanaka J, Inui K, Nagai T, Sakurai K, Harada K, Okada S. Evaluation of myelination by means of the T2 value on magnetic resonance imaging.  Brain Dev. 1993;  15 433-438
  • 16 Thornton J S, Amess P N, Penrice J, Chong W K, Wyatt J S, Ordidge R J. Cerebral tissue water spin-spin relaxation times in human neonates at 2.4 tesla: methodology and the effects of maturation.  Magn Reson Imaging. 1999;  17 1289-1295
  • 17 Hüppi P S, Warfield S, Kikinis R, Barnes P D, Zientara G P, Jolesz F A, Tsuji M K, Volpe J J. Quantitative magnetic resonance imaging of brain development in premature and mature newborns.  Ann Neurol. 1998;  43 224-235
  • 18 Iwasaki N, Hamano K, Okada Y, Horigome Y, Nakayama J, Takeya T, Takita H, Nose T. Volumetric quantification of brain development using MRI.  Neuroradiology. 1997;  39 841-846
  • 19 Hüppi P S, Maier S E, Peled S, Zientara G P, Barnes P D, Jolesz F A, Volpe J J. Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging.  Pediatr Res. 1998;  44 584-590
  • 20 Klingberg T, Vaidya C J, Gabrieli J D, Moseley M E, Hedehus M. Myelination and organization of the frontal white matter in children: a diffusion tensor MRI study.  Neuroreport. 1999;  10 2817-2821
  • 21 Morriss M C, Zimmerman R A, Bilaniuk L T, Hunter J V, Haselgrove J C. Changes in brain water diffusion during childhood.  Neuroradiology. 1999;  41 929-934
  • 22 Azzopardi D, Wyatt J S, Hamilton P A, Cady E B, Delpy D T, Hope P L, Reynolds E O. Phosphorus metabolites and intracellular pH in the brains of normal and small for gestational age infants investigated by magnetic resonance spectroscopy.  Pediatr Res. 1989;  25 440-444
  • 23 Bluml S, Seymour K J, Ross B D. Developmental changes in choline- and ethanolamine-containing compounds measured with proton-decoupled (31)P MRS in in vivo human brain.  Magn Reson Med. 1999;  42 643-654
  • 24 Scarabino T, Popolizio T, Bertolino A, Salvolini U. Proton magnetic resonance spectroscopy of the brain in pediatric patients.  Eur J Radiol. 1999;  30 142-153
  • 25 Dietrich R B, Bradley W G, Zaragoza E J, Otto R J, Taira R K, Wilson G H, Kangarloo H. MR evaluation of early myelination patterns in normal and developmentally delayed infants.  AJR. 1988;  15 889-896
  • 26 Staudt M, Grodd W. Normale Entwicklung des kindlichen Gehirns. In: Reiser M, Semmler W (eds.) Magnetresonanztomographie. Berlin, Heidelberg, New York; Springer Verlag (im Druck) 3. Auflage

Dr. med. Martin Staudt

Universitäts-Kinderklinik, Abteilung 3

Hoppe-Seyler-Straße 1

72 076 Tübingen

Phone: 07071/2981320

Fax: 07071/295473

Email: martin.staudt@med.uni-tuebingen.de