Int J Sports Med 2000; 21(4): 263-269
DOI: 10.1055/s-2000-8885
Physiology and Biochemistry
Georg Thieme Verlag Stuttgart ·New York

Oxygen Cost for Cycling as Related to Leg Mass in Males and Females, Aged 20 to 80[1]

J. A. Neder2 , L. E. Nery2 , S. Andreoni3 , A. Sachs3 , B. J. Whipp4
  • 2 Respiratory Division, Department of Medicine, Universidade Federal de Sao Paulo - Escola Paulista de Medicina (UNIFESP-EPM), Sao Paulo, Brazil
  • 3 Department of Preventive and Social Medicine, UNIFESP-EPM, Sao Paulo, Brazil
  • 4 Department of Physiology, St. George's Hospital Medical School, University of London, London, United Kingdom
Further Information

Publication History

Publication Date:
31 December 2000 (online)

In order to evaluate the determinants of the metabolic cost for cycle ergometry, we analyzed the relationship between V˙O2 and leg mass (LM) and total body mass (TBM) in 71 randomly-selected sedentary subjects (34 men), aged 20 to 80. Participants performed constant work rate (WR) tests at 0, 25, and 50 W (at 60 rpm) for 6 minutes in a randomized sequence: gross V˙O2, gross efficiency, and work efficiency were related to TBM and LM as assessed by dual energy x-ray absorptiometry. We found that gross V˙O2 and gross efficiency were more strongly related to LM than TBM but work efficiency values were independent of both (P > 0.05). Significantly higher values of V˙O2/TBM were found in subjects with large LM/TBM ratios and vice-versa; V˙O2/LM, however, did not change with anthropometric characteristics. Gross V˙O2 (mL/min) was predicted by a LM-based equation (10.6 [WR, W] + 16.8 [LM, kg] +75) with a mean error below 5 %: this equation predicted the cost more accurately than previous TBM-based formulations (P < 0.01). We conclude that leg mass actually provides the preferred frame of reference for predicting the oxygen cost for cycle ergometry at 60 rpm in sedentary subjects, independent of age or gender.

01 Partially supported by Research Grants from FAPESP/CNPq-Brazil. JA NEDER was supported by a Post-doctoral Research Fellowship Grant from FAPESP-Brazil (no. 95/9843-0).

References

  • 01 Altman D G. Relationship between two continuous variables.  In: Altman DG (ed) Practical Statistics for Medical Research. London; Chapman & Hall 1996: 277-324
  • 02 American College of Sports Medicine .Guidelines for Graded Exercise Testing and Training. 4th Ed. Philadelphia; Lea & Febiger 1991: 290-291
  • 03 Anton-Kuchly B, Roger P, Varene P. Determinants of increased energy cost of submaximal exercise in obese subjects.  J Appl Physiol. 1984;  56 18-23
  • 04 Astrand I, Astrand P-O, Stunkard A. Oxygen intake of obese individuals during work on a bicycle ergometer.  Acta Physiol Scand. 1960;  50 294-299
  • 05 Berry M J, Storsteen J A, Woodard C M. Effects of body mass on exercise efficiency and V˙O2 during steady-state cycling.  Med Sci Sports Exerc. 1993;  25 1031-1037
  • 06 Cotes J E, Allsopp D, Sardi F. Human cardiopulmonary responses to exercise, comparisons between progressive and steady state exercise, between arm and leg exercise, and between subjects differing in body weight.  Q J Exp Physiol. 1969;  54 211-217
  • 07 Davies M G, Dalsky G, Vanderburgh P. Allometric scalling of V˙O2max body mass and lean body mass in older men.  J Aging Phys Act. 1995;  3 324-331
  • 08 Dempsey J A, Reddan W, Balke B, Rankin J. Work capacity determinants and physiologic cost of weight-supported work in obesity.  J Appl Physiol. 1966;  21 1815-1820
  • 09 Francescato M P, Girardis M, di Prampero P E. Oxygen cost of internal work during cycling.  Eur J Appl Physiol. 1995;  72 51-57
  • 10 Gaesser G A, Brooks G A. Muscular efficiency during steady-state exercise: effects of speed and work rate.  J Appl Physiol. 1975;  38 1132-1139
  • 11 Heymsfield S B, Smith R, Aulet M, Bensen B, Lichtman S, Wang J. Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry.  Am J Clin Nutr. 1990;  52 214-218
  • 12 Huszczuk A, Whipp B J, Wasserman K. A respiratory gas exchange simulator for routine calibration in metabolic studies.  Eur Respir J. 1990;  3 465-468
  • 13 Jensen M D, Kanaley J A, Roust L R, O'Brien P C, Braun J S, Dunn W L. Assessment of body composition with use of dual-energy x-ray absorptiometry: evaluation and comparison with other methods.  Mayo Clin Proc. 1993;  68 867-873
  • 14 Jessup G T. Validity of the W170 test for predicting maximal oxygen intake.  Eur J Appl Physiol. 1977;  37 191-196
  • 15 Kamon E, Metz K F, Pandolf K B. Climbing and cycling with additional weights on the extremities.  J Appl Physiol. 1973;  35 367-370
  • 16 Kleinbaum D G, Kupper L L, Muller A E (eds). Applied Regression Analysis and other Multivariable Method. 2nd ed. Belmont; Duxbury Press 1988: 296
  • 17 Lang P, Latin R W, Berg K, Mellion M. The accuracy of the ASCM cycle ergometer equation.  Med Sci Sports Exerc. 1992;  24 272-276
  • 18 Latin R W, Berg K E, Smith P, Tolle R, Woodby-Brown S. Validation of a cycle ergometer equation for predicting steady-rate V˙O2.  Med Sci Sports Exerc. 1993;  25 970-974
  • 19 Latin R W, Berg K E. The accuracy of the ACSM and a new cycle ergometer equation for young women.  Med Sci Sports Exerc. 1994;  26 643-646
  • 20 Londeree B R, Moffit-Gerstenberger J, Padfield J A, Lottmann D. Oxygen consumption of cycle ergometry is nonlinearly related to work rate and pedal rate.  Med Sci Sports Exerc. 1997;  29 775-780
  • 21 Poole D C, Gaesser G A, Hogan M C, Knight D R, Wagner P D. Pulmonary and leg V˙O2 during submaximal exercise: implications for muscular efficiency.  J Appl Physiol. 1992;  72 805-810
  • 22 Wasserman K, Hansen J E, Sue D Y, Whipp B J, Casaburi R (eds). Principles of Exercise Testing and Interpretation. 2nd ed. Philadelphia; Lea & Febiger 1994: 354
  • 23 Wasserman K, Whipp B J. Exercise physiology in health and disease.  Am Rev Respir Dis. 1975;  112 219-249
  • 24 Whipp B J, Wasserman K. Efficiency of muscular work.  J Appl Physiol. 1969;  26 644-648
  • 25 Whipp B J, Bray G A, Koyal S N, Wasserman K. Exercise energetics and respiratory control in man following acute and chronic elevation of caloric intake. In: Bray, GA (ed) Obesity in Perspective. Vol. 2. Washington, DC; DHEW 1976: 157-163
  • 26 Whipp B J, Davis J A. The ventilatory stress of exercise in obesity.  Am Rev Respir Dis. 1984;  129 (Suppl) 92
  • 27 Whipp B J. Dynamics of pulmonary gas exchange.  Circulation. 1987;  76 (suppl VI) 18-28

01 Partially supported by Research Grants from FAPESP/CNPq-Brazil. JA NEDER was supported by a Post-doctoral Research Fellowship Grant from FAPESP-Brazil (no. 95/9843-0).

PhD. MD Dr. J. A. Neder

Centre for Exercise Science and Medicine Institute of Biological and Life Sciences University of Glasgow, West Medical Building

Glasgow G12 8QQ, Scotland

UK

Phone: + 44 (141) 3304449

Fax: + 44 (141) 3306345

Email: albneder@hotmail.com