Rofo 2001; 173(1): 65-71
DOI: 10.1055/s-2001-10231
EXPERIMENTELLE RADIOLOGIE
ORIGINALARBEIT
© Georg Thieme Verlag Stuttgart · New York

Differenzierung seröser und putrider Flüssigkeiten in vitro und in vivo mit diffusionsgewichteter MRT

E. Spüntrup1 A. Bücker1 G. Adam1 J. J. van Vaals2 R. W. Günther1
  • 1Klinik für Radiologische Diagnostik, Medizinische Einrichtungen der RWTH Aachen
  • 2Philips Medical Systems, 5680 Best, The Netherlands
Further Information

Publication History

Publication Date:
31 December 2001 (online)

Zusammenfassung:

Ziel: Das Ziel dieser Arbeit war es, die Möglichkeit der Differenzierung seröser und putrider Flüssigkeiten mit diffusionsgewichteter MRT zu untersuchen und drei verschiedene Sequenzschemata zu vergleichen. Material und Methoden: Hierzu wurden 13 Punktatproben (aus 6 serösen und 7 putriden Flüssigkeitsansammlungen) sowie 19 Patienten (mit 12 serösen und 7 putriden Flüssigkeitsansammlungen) mit einer diffusionsgewichteten Spin Echo-(SE), stimulierten Echo-(STE) und fettunterdrückten SE-Sequenz (SE-SPIR) untersucht. In vitro wurden 4 b-Faktoren (0, 87, 355, 798 s/mm2 für SE und SE-SPIR, 0, 51, 204, 460 s/mm2 für STE) gewählt sowie der ADC (apparent diffusion coefficient) berechnet. Bei den in vivo-Untersuchungen wurden bei ansonsten identischen Sequenzen nur zwei b-Faktoren akquiriert (0 und 598 s/mm2 für SE und SE-SPIR, 0 und 360 s/mm2 für STE) und die normalisierte Signalreduktion nach Schaltung der Diffusionsgradienten bestimmt. Eine Navigatorecho-Technik und eine periphere Pulstriggerung dienten der Bewegungsartefaktreduktion. Ergebnisse: In vitro lag der ADC in seröser Flüssigkeit nahe demjenigen freien Wassers, während sich in putriden Flüssigkeiten ein deutlich geringerer ADC fand. In vivo zeigten die diffusionsgewichteten Bilder in serösen Flüssigkeitsansammlungen eine deutliche Signalreduktion (auf 22-32 % der Ausgangswerte), während in putriden Flüssigkeitsansammlungen nur eine geringe Signalreduktion (auf 86-94 % der Ausgangswerte) nachweisbar war (p < 0,05). Diskussion: Mit allen drei untersuchten diffusionsgewichteten Sequenzen können seröse und putride Flüssigkeiten differenziert werden.

Differentiation of Serous and Purulent Fluids in vitro and in vivo by Means of Diffusion-Weighted MR Imaging.

Aim: The aim of this study was to test the feasibility for differentiation of serous fluid collections and abscess fluid with diffusion-weighted imaging and to compare three different diffusion sequences. Material and Methods: Thirteen puncture samples (6 serous, 7 purulent) and 19 patients with either serous fluid collections (n = 12) or abscesses (n = 7) were examined with diffusion-weighted spin-echo (SE), stimulated-echo (STE), and fat-suppressed SE (SE-SPIR) sequences. For in vitro studies 4 different b-factors (0, 87, 355, 798 s/mm2 in SE and SE-SPIR and 0, 51, 204, 460 s/mm2 in STE) were chosen and the apparent diffusion coefficient (ADC) was calculated. For in vivo measurements identical sequences with two b-factors (0,598 s/mm2 in SE and SE-SPIR and 0,360 s/mm2 in STE) were applied and the normalized signal attenuation was calculated. A navigator-echo technique and peripheral pulse triggering was used for motion artifact reduction. Results: The in vitro study yielded an ADC of serous fluid, which was close to that of free water, whereas for purulent fluid a significantly lower ADC was calculated. During in vivo examinations, serous fluids showed a strong signal attenuation (down to 22 - 32 % of basic value) compared to a minor signal attenuation in purulent fluids (down to 86 - 94 % of basic value) (p < 0.05). Conclusions: In summary, with all three investigated diffusion schemes serous and purulent fluids can be clearly differentiated.

Literatur

  • 1 Le Bihan D. Molecular diffusion, tissue microdynamics and microstructure.  NMR in Biomed. 1995;  8 376-386
  • 2 Szafer A, Zhong J, Gore J G. Theoretical model for water diffusion in tissues.  Magn Reson Med. 1995;  33 697-712
  • 3 Le Bihan D. Molecular diffusion nuclear magnetic resonance imaging.  Magn Reson Q. 1991;  7 1-30
  • 4 Baranowska H M, Olszewski K J. The hydration of proteins in solutions by self-diffusion coefficients NMR study.  Biochim Biophys Acta. 1996;  1289 312-314
  • 5 Cooper R L, Chang D B, Young A C. et al . Restricted diffusion in biophysical systems.  Biophys J. 1974;  14 161-177
  • 6 Latour L L, Svoboda K, Mitra P P. et al . Time-dependent diffusion of water in a biological model system.  Biophysics. 1994;  91 1229-1233
  • 7 Le Bihan D, Turner R, Douek P. et al . Diffusion MR imaging: clinical applications.  AJR. 1992;  159 591-599
  • 8 Gass A, Gaa J, Sommer A. et al . Echo-planar diffusion-weighted MRI in the diagnostics of acute ischemic stroke: characterisation of tissue abnormalities and limitations in the interpretation of imaging findings.  Radiologe. 1999;  39 695-702
  • 9 De Crespighy A J, Marks M P, Enzmann D R. et al . Navigated diffusion imaging of normal and ischämic human brain.  Magn Res Med. 1995;  33 720-728
  • 10 Baur A, Stäbler A, Brüning R. et al . Diffusion weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures.  Radiology. 1998;  207 349-356
  • 11 Spüntrup E, Adam G, Bücker A. et al .Navigated spin echo and stimulated echo diffusion-weighted imaging of the spine: potential for differentiation of benign and malignant bone marrow edema. Proceedings of the International Society for Magnetic Resonance in Medicine 1999:
  • 12 Yamashita Y, Namimoto T, Mitsuzaki K. et al . Mucin-producing tumor of the pancreas: diagnostic value of diffusion-weighted echo-planar imaging.  Radiology. 1998;  208 605-609
  • 13 Moteki T, Ishizaka H. Evaluation of cystic ovarian lesions using apparent diffusion coefficient calculated from reordered Turboflash MR images.  Magnetic Reson Imaging. 1999;  17 995-963
  • 14 Yamashita Y, Tang Y, Takahashi M. Ultrafast MR imaging of the abdomen: echo planar imaging and diffusion-weighted imaging.  J Magn Reson. 1998;  8 367-374
  • 15 Castillo M. Imaging brain abscesses with diffusion-weighted and other sequences.  Am J Neuroradiol. 1999;  20 ((7)) 1193-1194
  • 16 Ordidge R J, Helpern J A, Quing Z X. et al . Correction of motional artifacts in diffusion-weighted MR images using navigator echos.  Magn Reson Imaging. 1994;  12 455-460
  • 17 Anderson A W, Gore J G. Analysis and correction of motion artifacts in diffusion weighted imaging.  Magn Reson Med. 1994;  32 379-387
  • 18 Muertz P, Flacke S, Traeber F. et al . Diffusion-weighted MR imaging: navigated multi-shot SE EPI technique for clinical use.  Fortschr Geb Röntgenstr. 1998;  168 ((6)) 580-588
  • 19 Le Bihan D, Breton E, Lallemand D. et al . MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders.  Radiology. 1986;  161 401-407
  • 20 Spüntrup E, Bücker A, Adam G. et al .Diffusion-weighted MR imaging for differentiation of benign fracture edema and tumor infiltration of the vertebral body. AJR, zur Publikation angenommen
  • 21 Le Bihan D. Differentiation of benign versus pathologic compression fractures with diffusion-weighted MR imaging: a closer step toward the “Holy Grail” of tissue characterisation?.  Radiology. 1998;  207 305-307
  • 22 Ma L D, Frassica F J, Bluemke D A. et al . CT and MRI evaluation of musculoskeletal infection.  Crit Rev Diagn Imaging. 1997;  38 535-568
  • 23 Winn W C, Kissane J M. (eds.) . Anderson’s pathology. 10th ed. St. Louis: . Mosby 1996
  • 24 Wissenschaftliche Tabellen. Geigy Teilband Körperflüssigkeiten, Basel. 8. Auflage 1977
  • 25 Park J K, Kraus F C, Haaga J R. Fluid flow during percutaneous drainage procedures: an in vitro study of the effects of fluid viscosity, catheter size and adjunctive urokinase.  Am J Roentgenol. 1993;  160 165-169
  • 26 Renovanz HD(Hrsg.) Viskosimetrie inhomogener Körperflüssigkeiten. Dustri-Verlag Dr. Karl Feistle München-Deisenhofen; 1978
  • 27 Viscosity of water and various liquids. Concepts in Magnetic Resonance. 1998 10 (6):
  • 28 Le Bihan D, Breton E, Lallemand D. et al . MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders.  Radiology. 1986;  161 401-407
  • 29 Tofts P S, Lloyd D, Clark C A. et al . Test liquids for quantitative MRI measurements of self-diffusion coefficient in vivo.  Magn Reson Med. 2000;  43 368-374
  • 30 Merboldt K D, Hänicke W, Frahm J. Diffusion measurements using stimulated echos. In: Le Bihan D (ed.) Diffusion and Perfusion Magnetic Resonance Imaging. Application to Functional MRI.  Raven Press: New York; 1995
  • 31 Wesbey G E, Moseley M E, Ehman R L. Translational molecular self-diffusion in Magnetic Resonance imaging. II. Measurement of the self-diffusion coefficient.  Invest Radiol. 1984;  19 491-498
  • 32 Le Bihan D. Temperature imaging by NMR. In: Le Bihan D (ed.) Diffusion and Perfusion Magnetic Resonance Imaging. Application to Functional MRI.  Raven Press: New York; 1995
  • 33 Ebisu T, Tanaka C, Umeda M. et al . Discrimination of brain abscess from necrotic or cystic tumors by diffusion-weighted echo planar imaging.  Magn Reson Med. 1996;  14 ((9)) 1113-1116
  • 35 Kim Y J, Chang K H, Kim H D. et al . Brain abscess and necrotic or cystic tumor: discrimination with signal intensity on diffusion-weighted MR imaging.  Am J Roentgenol. 1998;  17 ((6)) 1487-1490
  • 34 Dresprechins B, Stadnik T, Koerts G. et al . Use of diffusion-weighted MR imaging in differential diagnosis between intracerebral necrotic tumors and cerebral abscesses.  Am J Neuroradiol. 1999;  20 ((7)) 1252-1257
  • 36 Bammer R, Augustin M, Simbrunner J. et al .In-vivo diffusion weighted interleaved echo planar imaging of the human spinal cord. Proceedings of the International Society for Magnetic Resonance in Medicine 1999:

Dr. med. Elmar Spüntrup

Klinik für Radiologische DiagnostikMedizinische Einrichtungen der RWTH Aachen

Pauwelsstraße 30, 52057 Aachen

Phone: 0241-8088332

Fax: 0241-8888499

Email: spuenti@rad.rwth-aachen.de