J Reconstr Microsurg 2001; 17(1): 045-050
DOI: 10.1055/s-2001-12688
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Fetal Spinal-Cord Allograft as a Substitute for Peripheral-Nerve Reconstruction: A Preliminary Experimental and Histologic Study

A. H. Schwabegger, H. Hussl
  • Department of Plastic and Reconstructive Surgery, Leopold Franzens University Innsbruck, Innsbruck, Austria
Further Information

Publication History

Publication Date:
31 December 2001 (online)

ABSTRACT

The aim of this preliminary experimental study consisted of an exploration of the suitability of fetal spinal-cord allograft as an alternative guiding conduit for bridging peripheral-nerve defects, since fetal tissue is considered to be less immunogenic than tissue from adults or maturely born individuals. The experiment was carried out with 10 Long Evans inbred rats. Within the control group, autologous sural-nerve grafts served to bridge an artificially created defect of 1.5 cm along the course of the sciatic nerve in the thigh of adult male rats. On the contralateral thigh, a defect of the same size was bridged by spinal cord, taken from 17- to 20-day old fetuses. Ten weeks thereafter, the reconstructed nerves were examined histologically. Compared to the autologous nerve grafts with optimal regeneration, the spinal-cord grafts showed less ingrowth of axons. But, surprisingly, an exceptionally long survival time of astrocytes and other nerve cells resulted while, at the graft margin, bundles of astrocytes apparently served as a conduit for ingrowing axons.

Using fetal spinal-cord allograft to reconstruct peripheral-nerve defects may present a future alternative for coexisting methods, but further studies with longer follow-ups, a greater number of larger animals, and with the additional evaluation of immunologic interactions, should be attempted, to draw clear conclusions.

REFERENCES

  • 1 Brunelli G A, Battiston B, Vigasio A. Bridging nerve defects with combined skeletal muscle and vein conduits.  Microsurgery . 1993;  14 247
  • 2 Chiu D T, Strauch B. A prospective clinical evaluation of autogenous vein grafts used as a nerve conduit for distal sensory nerve defects of 3 cm or less.  Plast Reconstr Surg . 1990;  86 928
  • 3 Gattuso J M, Glasby M A, Gschmeissner S E, Norris R W. A comparison of immediate and delayed repair of peripheral nerves using freeze-thawed autologous skeletal muscle grafts in the rat.  Br J Plast Surg . 1989;  42 306
  • 4 Hems T E, Glasby M A. The limit of graft length in the experimental use of muscle grafts for nerve repair.  J Hand Surg . 1993;  18B 165
  • 5 Hems T E, Glasby M A. Comparison of different methods of repair of long peripheral nerve defects: an experimental study.  Br J Plast Surg . 1992;  45 497
  • 6 Itoh S, Shinomiya K, Samejima H. Experimental study on nerve regeneration through the basement membrane tubes of the nerve, muscle, and artery.  Microsurgery . 1996;  17 525
  • 7 Lawson G M, Glasby M A. A comparison of immediate and delayed nerve repair using autologous freeze-thawed muscle grafts in a large animal model: the simple injury.  J Hand Surg . 1995;  20B 663
  • 8 Kakinoki R, Nishijima N, Ueba Y. Nerve regeneration over a 20 mm gap through a nerve conduit containing blood vessels in rats: the influence of interstump distance on nerve regeneration.  J Neurosurg Sci . 1998;  42 11
  • 9 Walton R L, Brown R E, Matory W E. Autogenous vein graft repair of digital nerve defects in the finger: a retrospective clinical study.  Plast Reconstr Surg . 1989;  84 944
  • 10 Brunelli G, Milanesi S. Experimental repair of spinal cord lesions by grafting from CNS to PNS.  J Reconstr Microsurg . 1988;  4 245
  • 11 Carbonetto S, Evans D, Cochard P. Nerve fiber growth in culture on tissue substrata from central and peripheral nervous systems.  J Neurosci . 1987;  7 610
  • 12 Chumasov E I, Petrova E S. Implantation of embryonic neocortex and spinal cord into injured peripheral nerve of adult rats.  Biull Eksp Biol Med . 1990;  110 198
  • 13 Petrova E S, Chumasov E I, Otellin V A. Implantation of embryonal brain tissue into regenerating peripheral nerve.  Neurosci Behav Physiol . 1989;  19 313
  • 14 Labrador R O, Buti M, Navarro X. Influence of collagen and laminin gels concentration on nerve regeneration after resection and tube repair.  Exp Neurol . 1998;  149 243
  • 15 Trigg D J, O'Grady K M, Bhattacharyya T. Peripheral nerve regeneration: comparison of laminin and acidic fibroblast growth factor.  Am J Otolaryngol . 1998;  19 29
  • 16 Rosen J M, Padilla J A, Nguyen K D. Artificial nerve graft using collagen as an extracellular matrix for nerve repair compared with sutured autograft in a rat model.  Ann Plast Surg . 1990;  25 375
  • 17 Egloff D V. Nerve anastomoses with human fibrin: preliminary clinical report (56 cases).  Ann Chir Main . 1983;  2 101
  • 18 Skoulis T G, Lovice D, von Fricken K, Terzis J K. Nerve expansion: the optimal answer for the short nerve gap. Behavioral analysis.  Clin Orthop . 1995;  314 84
  • 19 Bain J R, McKinnon S E, Hudson A R. The peripheral nerve allograft: an assessment of regeneration across nerve allografts in rats immunosuppressed with Cyclosporin A.  Plast Reconstr Surg . 1988;  82 1052
  • 20 Bernstein J J. Viability, growth, and maturation of fetal brain and spinal cord in the sciatic nerve of adult rat.  J Neurosci Res . 1983;  10 343
  • 21 Bernstein J J, Tang Y. Structure and function of fetal cortex implanted into degenerating peripheral nerve of adult rat.  Brain Res . 1984;  324 243
  • 22 Best T J, MacKinnon S E, Bain J R. Verification of free vascularized nerve graft model in the rat with application to the peripheral nerve allograft.  Plast Reconstr Surg . 1993;  92 516
  • 23 Zalewski A A, Fahy G M, Azzam N A, Azzam R N. The fate of cryopreserved nerve isografts and allografts in normal and immunosuppressed rats.  J Comp Neurol . 1993;  331 134
  • 24 MacKinnon S E, Hudson A R. Clinical application of peripheral nerve transplantation.  Plast Reconstr Surg . 1992;  90 695
  • 25 Petrova E S, Chumasov E I. Development of the fragments of embryonal spinal chord in a damaged peripheral nerve of a mature animal.  Arkh Anat Gistol Embriol . 1990;  99 26
  • 26 Sieradzan K, Vrbowa G. The ability of developing spinal neurons to reinnervate a muscle through a peripheral nerve conduit is enhanced by cografted embryonic spinal cord.  Exp Neurol . 1993;  122 232