Z Gastroenterol 2001; 39(4): 321-327
DOI: 10.1055/s-2001-12871
Übersicht
© Karl Demeter Verlag im Georg Thieme Verlag Stuttgart · New York

HDL-Stoffwechsel

HDL metabolismJ. Genschel, H. H.-J Schmidt
  • Medizinische Klinik mit Schwerpunkt Gastroenterologie, Hepatologie und Endokrinologie, Campus Charité Mitte
Further Information

Publication History

24.7.2000

4.9.2000

Publication Date:
31 December 2001 (online)

Zusammenfassung

Lipide und Lipoproteine sind Hauptrisikofaktoren für das Entstehen und den Progress arteriosklerotischer kardiovaskulärer Erkrankungen. Störungen im Lipoproteinstoffwechsel können u. a. zur Manifestation eines Diabetes mellitus, zu einer akuten Pankreatitis und zum frühzeitigen Einsetzen arteriosklerotischer Veränderungen führen. Epidemiologische Studien zeigten, dass Plasmakonzentrationen der High-Density-Lipoproteine (HDL) jedoch invers mit dem Risiko einer koronaren Herzerkrankung korreliert sind. Den HDL wird eine entscheidende Rolle im reversen Cholesterintransport zugesprochen. Dabei wird überschüssiges freies Cholesterin des peripheren Gewebes im Plasma in die HDL eingebaut, verestert und auf diesem Weg zur Leber zurücktransportiert, wo eine Sekretion über die Galle stattfinden kann. Der Metabolismus der HDL ist bis heute nicht im Detail geklärt. Zahlreiche Faktoren, welche diesen Metabolismus beeinflussen, wurden bislang identifiziert. Insbesondere die Identifizierung des Cholesterinefflux-regulierenden Proteins erbrachte neue Erkenntnisse bezüglich des HDL-Stoffwechsels. Eine detaillierte Aufklärung des Stoffwechsels der HDL zur Entwicklung neuer Therapiestrategien ist zwingend notwendig, ebenso zur Regulation der Serumkonzentrationen dieses so lebenswichtigen Lipoproteins. In dieser Übersicht sollen hier die wesentlichen bislang bekannten Faktoren des HDL-Metabolismus beschrieben werden.

HDL metabolism

Lipids and lipoproteins represent main risk factors for the development and the progress of atherosclerotic and cardiovascular diseases. Disorders in lipoprotein metabolism may result in diabetes mellitus, acute pancreatitis, and in the early occurrence of atherosclerotic alterations. The plasma concentration of high density lipoproteins (HDL) is inverse correlated with the risk of cardiovascular diseases as shown in epidemiologic studies. HDL play an important role in the reverse cholesterol transport. Free cholesterol from peripheral cells can be assembled in HDL particles, transformed to cholesterol esters, transported to the liver, and secreted via the bile as bile acids. The metabolism of HDL is not known in detail. Numerous factors were identified to influence the metabolism of HDL. Particularly the identification of the cholesterol efflux regulating protein adduced new insights in HDL metabolism. A detailed description of HDL metabolism is necessary for the evaluation of new therapeutic strategies for the regulation of the serum concentration of this important lipoprotein. Here we describe the known influencing factors for a better understanding of HDL metabolism.

Literatur

  • 1 Gordon T, Castelli W P, Hjortland M C, Kannel W B, Dawber T R. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study.  Am J Med. 1977;  62 707-714
  • 2 Brewer H J, Sprecher D, Gregg R, Hoeg J. Risk factors for the development of premature cardiovascular disease. D. Kritchevsky, W. Holmes, and R. Paoletti Drugs Affecting Lipid Metabolism VIII New York; Plenum Press 1985: 27-36
  • 3 Assmann G, Schulte H. Ergebnisse und Folgerungen aus der Prospektiven Cardiovaskulären Münster (PROCAM) Studie. G. Assmann Fettstoffwechselstörungen und koronare Herzkrankheit München; MMw Medizin Verlag 1988: 97-131
  • 4 Chang M Y, Lees A M, Lees R S. Low-density lipoprotein modification and arterial wall accumulation in a rabbit model of atherosclerosis.  Biochemistry. 1993;  32 8518-8524
  • 5 Goldstein J L, Brown M S, Stone N J. Genetics of the LDL receptor: Evidence that the mutations affecting binding and internalization are allelic.  Cell. 1977;  12 629-641
  • 6 Goldstein J L, Hobbs H H, Brown M B. Familial Hypercholesterolemia. C. R. Scriver et al The metabolic and molecular bases of inherited disease New York; McGraw Hill 1995: 1981-2030
  • 7 Gorden D, Rifkind B. High density lipoprotein-the clinical implications of recent studies.  N Engl J Med. 1989;  321 1311-1316
  • 8 Miller N. Association of high-density lipoprotein subclasses and apolipoproteins with ischemic heart disease and coronary atherosclerosis.  Am Heart J. 1987;  113 589-597
  • 9 Schaefer E, Zech L, Jenkins L. et al . Human apolipoprotein A-I and A-II metabolism.  J Lipid Res. 1982;  23 850-862
  • 10 Brinton E, Eisenberg S, Breslow J. Elevated high density lipoprotein cholesterol levels correlate with decreased apolipoprotein A-I and A-II fractional catabolic rate in women.  J Clin Invest. 1989;  84 262-269
  • 11 Brinton E, Eisenberg S, Breslow J. A low fat diet decreases high density lipoprotein cholesterol (HDL) levels by decreasing HDL apolipoprotein transport rates.  J Clin Invest. 1990;  85 144-151
  • 12 Zech L, Schaefer E, Bronzert T, Aamont R, Brewer H j. Metabolism of human apolipoprotein A-I and A-II: Compartmental models.  J Lipid Res. 1983;  24 60-71
  • 13 Phillips M C, Johnson W J, Rothblat G H. Mechanisms and consequences of cellular cholesterol exchange and transfer.  Biochim Biophys Acta. 1987;  906 223-276
  • 14 Bruckdorfer K R, Crowe J, Sherry M K. Evidence of water soluble intermedicate in exchange of cholesterol between membranes.  Biochim Biophys Acta. 1884;  778 489-496
  • 15 Loeb J, Dawson G. High density lipoprotein exchage reactions.  Mol Cell Biochem. 1983;  52 161-176
  • 16 Alaupovic P, Lee D, McConathy W J. Studies on the composition and structure of plasma lipoproteins: Distribution of lipoprotein families in major density classes of normal human plasma lipoproteins.  Biochim Biophys Acta. 1972;  260 689-707
  • 17 Cheung M, Albers J. Characterization of lipoprotein particles isolated by immunoaffinity chromatography: Particles containing A-I and A-II and particles containing A-I but no A-II.  J Biol Chem. 1984;  259 12 201-12 209
  • 18 Koren E, Puchois P, Alaupovic P. et al . Quantification of two different types of apolipoprotein A-I containing lipoprotein particles in plasma by enzyme-linked diffential-antibody immunosorbent assay.  Clin Chem. 1987;  36 38-43
  • 19 Parra H, Mezdour H, Ghalim N, Bard J, Fruchart J. Differential electroimmunoassay of human LpA-I lipoprotein particles on ready-to use plates.  Clin Chem. 1990;  36 1431-1435
  • 20 Rader D, Castro G, Zech L, Fruchart J C, Brewer HB jr. In vivo metabolism of apolipoprotein A-I on high density lipoprotein particles LpA-I and LpA-I, A-II.  J Lipid Res. 1991;  32 1849-1859
  • 21 Puchois P, Kandoussi A, Fievet P. et al . Apolipoprotein A-I containing lipoproteins in coronary artery disease.  Atherosclerosis. 1987;  68 35-40
  • 22 Stampfer M, Sacks F, Salvini S, Willett W, Hennekens C. A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction.  N Engl J Med. 1991;  325 373-381
  • 23 Barbaras R, Puchois P, Fruchart J -C, Ailhaud G. Cholesterol efflux from cultured adipose cells is mediated by LpAI particles but not by LpAI:AII particles.  Biochem Biophys Res Com. 1987;  142 63-69
  • 24 Schultz J, Verstuyft J, Gong E, Nichols A, Rubin E. Protein compostion determines the anti-atherigenic properties of HDL in transgenic mice.  Nature. 1993;  365 762-764
  • 25 Mehrabian M, Qiao J, Hyman R. et al . Influence of the apoA-II gene locus on HDL levels and fatty streak development in mice.  Arterioscler Thromb. 1993;  13 1-10
  • 26 Warden C, Hedrick C, Qiao J, Castllani L, Lusis A. Atherosclerosis in transgenic mice overexpressing apolipoprotein A-II.  Science. 1993;  261 469-472
  • 27 Cheung M C, Wolf A C, Lum K D, Tollefson J H, Albers J J. Distribution and localization of lecithin:cholesterol acyltransferase and cholesteryl ester transfer activity in A-I-containing lipoproteins.  J Lipid Res. 1986;  27 1135-1144
  • 28 Barkia A, Barbaras R, Ghalim N. et al . Effect of different Apo A-I containing lipoprotein particles on reverse cholesterol transport in fat cells.  Horm Metab Res Suppl. 1988;  19 10-12
  • 29 Glomset J A. The plasma lecithin:cholesterol acyltransferase.  J Lipid Res. 1968;  9 155-167
  • 30 Barter P J, Hopkins G J, Gorjatschko L. Lipoprotein substrates for plasma cholesterol esterification. Influence of particle size and composition of the high density lipoprotein subfraction 3.  Atherosclerosis. 1985;  58 97-107
  • 31 Jonas A. Lecithin-cholesterol acyltransferase in the metabolism of high-density lipoproteins.  Biochim Biophys Acta. 1991;  1084 205-220
  • 32 Barter P J, Hopkins G J, Calvert G D. Transfers and exchanges of esterified cholesterol between plasma lipoproteins.  Biochem J. 1982;  208 1-7
  • 33 Hesler C B, Swenson T L, Tall A R. Purification and characterization of a human plasma cholesteryl ester transfer protein.  J Biol Chem. 1987;  262 2275-2282
  • 34 Francone O L, Gurakar A, Fielding C. Distribution and functions of lecithin:cholesterol acyltransferase and cholesteryl ester transfer protein in plasma lipoproteins. Evidence for a functional unit containing these activities together with apolipoproteins A-I and D that catalyzes the esterification and transfer of cell-derived cholesterol.  J Biol Chem. 1989;  264 7066-1072
  • 35 Tollefson J H, Ravnik S, Albers J J. Isolation and characterization of a phospholipid transfer protein (LTP-II) from human plasma.  J Lipid Res. 1988;  29 1593-1602
  • 36 Nishida H I, Nishida T. Phospholipid transfer protein mediates transfer of not only phosphatidylcholine but also cholesterol from phosphatidylcholine-cholesterol vesicles to high density lipoproteins.  J Biol Chem. 1997;  272 6959-6964
  • 37 van Vieira-Bruggen D, Kalkman I, van Gent T, van Tol A, Jansen H. Induction of adrenal scavenger receptor BI and increased high density lipoprotein-cholesteryl ether uptake by in vivo inhibition of hepatic lipase.  J Biol Chem. 1998;  273 32 038-32 041
  • 38 Wang N, Weng W, Breslow J L, Tall A R. Scavenger receptor BI (SR-BI) is up-regulated in adrenal gland in apolipoprotein A-I and hepatic lipase knock-out mice as a response to depletion of cholesterol stores. In vivo evidence that SR-BI is a functional high density lipoprotein receptor under feedback control.  J Biol Chem. 1996;  271 21 001-21 004
  • 39 Deckelbaum R J, Ramakrishnan R, Eisenberg S, Olivecrona T, Bengtsson-Olivecrona G. Triacylglycerol and phospholipid hydrolysis in human plasma lipoproteins: Role of lipoprotein and hepatic lipase.  Biochemistry. 1992;  31 8544-8551
  • 40 Shirai K, Barnhart R L, Jackson R L. Hydrolysis of human plasma high density lipoprotein 2-phospholipids and triglycerides by hepatic lipase.  Biochem Biophys Res Com. 1981;  100 591-599
  • 41 Musliner T A, Herbert P N, Kingston M J. Lipoprotein substrates of lipoprotein lipase and hepatic triacylglycerol lipase from human post-heparin plasma.  Biochim Biophys Acta. 1979;  575 277-288
  • 42 Hime N J, Barter P J, Rye K A. The influence of apolipoproteins on the hepatic lipase-mediated hydrolysis of high density lipoprotein phospholipid and triacylglycerol.  J Biol Chem. 1998;  273 27 191-27 198
  • 43 Hosoai H, Webb N R, Glick J M. et al . Expression of serum amyloid A protein in the absence of the acute phase response does not reduce HDL cholesterol or apoA-I levels in human apoA-I transgenic mice.  J Lipid Res. 1999;  40 648-653
  • 44 Tietge U J, Maugeais C, Cain W. et al . Overexpression of secretory phospholipase A(2) causes rapid catabolism and altered tissue uptake of high density lipoprotein cholesteryl ester and apolipoprotein A-I.  J Biol Chem. 2000;  275 10 077-10 084
  • 45 Barter P J, Rye K -A. Molecular mechanisms of reverse cholesterol transport.  Curr Opin Lipidol. 1996;  7 82-87
  • 46 Fielding C J, Fielding P E. Molecular physiology of reverse cholesterol transport.  J Lipid Res. 1995;  36 211-228
  • 47 Rothblat G H, Mahlberg F H, Johnson W J, Phillips M C. Apolipoproteins, membrane cholesterol domains, and the regulation of cholesterol efflux.  J Lipid Res. 1992;  33 1091-1097
  • 48 Schmidt H H-J, Manns M P. Reverse cholesterol transport.  Z Gastroenterol. 1996;  34 386-391
  • 49 Acton S, Rigotti A, Landschulz K T. et al . Identification of scavenger receptor SR-BI as a high density lipoprotein receptor (see comments).  Science. 1996;  271 518-520
  • 50 Fidge N H. High density lipoprotein receptors, binding proteins, and ligands.  J Lipid Res. 1999;  40 187-201
  • 51 Graham D L, Oram J F. Identification and characterization of a high density lipoprotein-binding protein in cell membranes by ligand blotting.  J Biol Chem. 1987;  262 7439-7442
  • 52 McKnight G L, Reasoner J, Gilbert T. et al . Cloning and expression of a cellular high density lipoprotein-binding protein that is up-regulated by cholesterol loading of cells.  J Biol Chem. 1992;  267 12 131-12 141
  • 53 Dodson R E, Shapiro D J. Vigilin, a ubiquitous protein with 14 K homology domains, is the estrogen-inducible vitellogenin mRNA 3’-untranslated region-binding protein.  J Biol Chem. 1997;  272 12 249-12 252
  • 54 Kanamori H, Dodson R E, Shapiro D J. In vitro genetic analysis of the RNA binding site of vigilin, a multi-KH-domain protein.  Mol Cell Biol. 1998;  18 3991-4003
  • 55 Kozarsky K F, Donahee M H, Rigotti A. et al . Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels.  Nature. 1997;  387 414-417
  • 56 Ueda Y, Royer L, Gong E. et al . Lower plasma levels and accelerated clearance of high density lipoprotein (HDL) and non-HDL cholesterol in scavenger receptor class B type I transgenic mice.  J Biol Chem. 1999;  274 7165-7171
  • 57 Rigotti A, Trigatti B L, Penman M. et al . A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism.  Proc Natl Acad Sci USA. 1997;  94 12 610-12 615
  • 58 Trigatti B, Rigotti A, Krieger M. The role of the high-density lipoprotein receptor SR-BI in cholesterol metabolism.  Curr Opin Lipidol. 2000;  11 123-131
  • 59 Rodrigueza W V, Thuahnai S T, Temel R E. et al . Mechanism of scavenger receptor class B type I-mediated selective uptake of cholesteryl esters from high density lipoprotein to adrenal cells.  J Biol Chem. 1999;  274 20 344-20 350
  • 60 Moestrup S K, Kozyraki R. Cubilin, a high-density lipoprotein receptor.  Curr Opin Lipidol. 2000;  11 133-140
  • 61 Seetharam B, Bose S, Li N. Cellular import of cobalamin (Vitamin B-12).  J Nutr. 1999;  129 1761-1764
  • 62 Christensen E I, Birn H, Verroust P, Moestrup S K. Megalinmediated endocytosis in renal proximal tubule.  Ren Fail. 1998;  20 191-199
  • 63 Gliemann J. Receptors of the low density lipoprotein (LDL) receptor family in man. Multiple functions of the large family members via interaction with complex ligands.  Biol Chem. 1998;  379 951-964
  • 64 Rust S, Walter M, Funke H. et al . Assignment of Tangier disease to chromosome 9q31 by a graphical linkage exclusion strategy (published erratum appears in Nat Genet 1998; 20: 312).  Nat Genet. 1998;  20 96-98
  • 65 Hayden M R, Clee S M, Brooks-Wilson A. et al . Cholesterol efflux regulatory protein, Tangier disease and familial high-density lipoprotein deficiency.  Curr Opin Lipidol. 2000;  11 117-122
  • 66 Rust S, Rosier M, Funke H. et al . Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1(see comments).  Nat Genet. 1999;  22 352-355
  • 67 Dean M, Allikmets R. Evolution of ATP-binding cassette transporter genes.  Curr Opin Genet Dev. 1995;  5 779-785
  • 68 Oram J F, Vaughan A M. ABCA1-mediated transport of cellular cholesterol and phospholipids to HDL apolipoproteins.  Curr Opin Lipidol. 2000;  11 253-260
  • 69 Young S G, Fielding C J. The ABCs of cholesterol efflux (news; comment).  Nat Genet. 1999;  22 316-318
  • 70 Assmann G, Schulte H, von Eckardstein A, Huang Y. High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport.  Atherosclerosis. 1996;  124 (Suppl.) S11-20
  • 71 Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults . Summary of the second report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel II).  JAMA. 1993;  269 3015-3023
  • 72 Wood P D, Stefanick M L, Dreon D M. et al . Changes in plasma lipids and lipoproteins in overweight men during weight loss through dieting as compared with exercise.  N Engl J Med. 1988;  319 1173-1179
  • 73 Grundy S M, Denke M A. Dietary influences on serum lipids and lipoproteins.  J Lipid Res. 1990;  31 1149-1172
  • 74 Stampfer M J, Colditz G A, Willett W C, Speizer F E, Hennekens C H. A prospective study of moderate alcohol consumption and the risk of coronary disease and stroke in women.  N Engl J Med. 1988;  319 267-273
  • 75 Stubbe I, Eskilsson J, Nilsson-Ehle P. High-density lipoprotein concentrations increase after stopping smoking.  BMJ (Clin Res Ed.). 1982;  284 1511-1513
  • 76 Schmidt H H-J, Remaley A T, Stonik J A. et al . Carboxyl-terminal Domain Truncation Alters Apolipoprotein A-I in Vivo Catabolism.  J Biol Chem. 1995;  270 5469-5475
  • 77 Genschel J, Haas R, Proepsting M J, Schmidt H H. Apolipoprotein A-I induced amyloidosis.  FEBS Lett. 1998;  430 145-149

Anschrift für die Verfasser

PD Dr. med Hartmut Schmidt

Medizinische Klinik mit Schwerpunkt
Gastroenterologie, Hepatologie und Endokrinologie
Campus Charité Mitte

Schumannstraße 20/21

10117 Berlin

Fax: 0 30/28028141

Email: janine.genschel@charite.de