Semin Reprod Med 2001; 19(1): 075-086
DOI: 10.1055/s-2001-13914
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Use of the Rat Model to Study hCG/LH Effects on Uterine Blood Flow

Ch. V. Rao1 , Nancy L. Alsip2
  • 1Department of Obstetrics and Gynecology, University of Louisville School of Medicine, Louisville, Kentucky and
  • 2Center for Applied Microcirculatory Research, University of Louisville School of Medicine, Louisville, Kentucky
Further Information

Publication History

Publication Date:
31 December 2001 (online)

ABSTRACT

Luteinizing hormone (LH) and human chorionic gonadotropin (hCG) share a common receptor. LH/hCG receptors, located in the vascular smooth muscle and endothelial cells of uterine blood vessels, are most numerous in smaller intramyometrial vessels and are cyclic in nature. There is a correlation between hCG levels and decreased uterine vascular resistance in humans, and in pseudopregnant rats, hCG decreases uterine blood flow. We found that systemic administration of hCG to cycling rats reduced uterine blood flow within 20 minutes on all days of the estrous cycle when flow was measured via the radioactive microsphere method. This effect was absent in ovariectomized rats. To determine the response to hCG at the microvascular level, we measured uterine arteriolar diameters in vivo via videomicroscopy after direct application or injection of hCG in rats on diestrus-1, diestrus-2, and proestrus. When hCG was suffused over the uterus (20 IU/60 mL), the uterine arterioles in diestrus (1 and 2) rats dilated but in proestrus rats were constricted. Neither response was altered in animals whose ovaries were removed 3 hours previously. An intraperitoneal injection of hCG (50 IU) caused uterine arteriolar constriction in diestrus-2 and proestrus animals but no change in diestrus-1. In ovariectomized rats, uterine arteriolar constriction following hCG injection was absent. Thus, the response of the uterine vasculature is not only cycle day dependent but also dependent on the route of administration. The effect of hCG on uterine blood flow in the rat may be a direct action of hCG, or it could be secondary to the release of other vasoactive substances known to be released by hCG. hCG might also alter blood flow by inducing angiogenesis.

REFERENCES

  • 1 Freeman M E. The ovarian cycle of the rat. In: Knobil E, Neill JD The Physiology of Reproduction. New York: Raven Press 1988: 1893-1928
  • 2 Takemori K, Okamura H, Kansaki H. Scanning electron microscopic observations of microcorrosion casts for non-pregnant rat uterine vascular architecture.  Acta Obstet Gynaecol Jpn . 1982;  34 729-737
  • 3 Rogers P AW, MacPherson A M. In-vivo microscopy of the rat endometrial subepithelial capillary plexus during the oestrus cycle and after ovariectomy.  J Reprod Fertil . 1990;  90 137-145
  • 4 Kopin I J, Wurtman R J. Flow of uterine blood, and the estrus cycle.  Nature . 1963;  199 386-387
  • 5 Einer-Jensen N. Endometrial blood flow in rats.  Horm Res . 1976;  7 49-55
  • 6 Hill J B, Alsip N L, Rao C V, Asher E F. Human chorionic gonadotropin directly and indirectly alters uterine arteriolar diameters in cycling rats.  Am J Obstet Gynecol . 1997;  176 150-157
  • 7 Harvey C A, Owen D AA. Changes in ovarian and blood flow during the estrus cycle in rats.  J Endocrinol . 1976;  71 367-369
  • 8 Rogers P AW, Gannon B J. The vascular and microvascular anatomy of the rat uterus during the oestrus cycle.  AJEBAK . 1981;  59 667-679
  • 9 Cannon P E, Timmermans G J. Densité de l'innervation neurovégétative de l'uterus chez la ratte.  C R Soc Biol . 1986;  180 482-491
  • 10 Garfield R E. Structural studies of innervation on non-pregnant rat uterus.  Am J Physiol . 1986;  251 C41-C54
  • 11 Jovanovic A, Grbovic L, Tulic I. Predominant role for nitric oxide in the relaxation induced by acetylcholine in human uterine artery.  Hum Reprod . 1994;  9 387-393
  • 12 Matsumoto T, Kanamaru K, Sugiyama Y, Murata Y. Endothelium-derived relaxation of the pregnant and non-pregnant canine uterine artery.  J Reprod Med . 1992;  37 529-533
  • 13 Moustafa F A, Fatani J A, El-Eishi H, El-Badawi M G. Intrinsic innervation of the uterus in guinea pig and rat.  Acta Anat Basel . 1987;  129 53-58
  • 14 Rakitskaia V V, Proimina F I, Tchudinov J B. Adrenergic innervation of the rat uterus during the oestrus cycle.  Sechenov Physiol J USSR . 1986;  72
  • 15 Haase E B, Buchman J, Tietz A E, Schramm P. Pregnancy-induced uterine neuronal degeneration in the rat.  Cell Tissue Res . 1997;  288 293-306
  • 16 Berkley K J, Robbins A, Sato Y. Afferent fibers supplying the uterus in the rat.  J Neurophysiol . 1988;  59 142-162
  • 17 Berkley K J, Hotta H, Robbins A, Sato Y. Functional properties of afferent fibers supplying reproductive and other pelvic organs in pelvic nerve of female rat.  J Neurophysiol . 1990;  63 256-272
  • 18 Berkley K J, Robbins A, Sato Y. Functional differences between afferent fibers in the hypogastric and pelvic nerves innervating female reproductive organs in the rat.  J Neurophysiol . 1993;  69 533-544
  • 19 Robbins A, Berkley K J, Sato Y. Estrous cycle variation of afferent fibers supplying reproductive organs in the female rat.  Brain Res . 1992;  596 353-356
  • 20 Shew R L, Papka R E, McNeill D L. Substance P and calcitonin gene-related peptide immunoreactivity in nerves of the rat uterus: localization, colocalization, and effects on uterine contractility.  Peptides . 1991;  12 593-600
  • 21 Shew R L, Papka R E, McNeill D L. Galanin and calcitonin gene-related peptide immunoreactivity in nerves of the rat uterus: localization, colocalization, and effects on uterine contractility.  Peptides . 1992;  13 273-279
  • 22 Yang D, Van Buren A G, Clark K E. Effect of calcitonin gene-related peptide on the uterine vasculature of the nonpregnant ewe.  Am J Obstet Gynecol . 1992;  167 178-184
  • 23 Bodelsson G, Stjernquist M. Smooth muscle dilation in the human uterine artery induced by substance P, vasoactive intestinal polypeptide, calcitonin gene-related peptide, and atrial natriuretic peptide: relation to endothelium-derived relaxing substances.  Hum Reprod . 1992;  7 1185-1188
  • 24 Prada J A, Ross R, Clark K E. Effect of atrial natriuretic peptide and other vasoactive compounds on the uterine vascular bed of the nonpregnant sheep.  Proc Soc Exp Biol Med . 1992;  201 261-266
  • 25 Leiberman J R, Wiznitzer A, Glezerman M, Feldman B, Levy J, Sharoni Y. Estrogen and progesterone receptors in the uterine artery of rats during and after pregnancy.  Eur J Gynecol Reprod Biol . 1993;  51 35-40
  • 26 Van Buren A G, Yang D, Clark K E. Estrogen-induced uterine vasodilation is antagonized by L-nitroarginine methyl ester, an inhibitor of nitric oxide synthesis.  Am J Obstet Gynecol . 1992;  167 828-833
  • 27 Vagnoni K E, Shaw C E, Phernetton T M, Meglin B M, Bird I M, Magness R R. Endothelial vasodilator production by uterine and systemic arteries: III. Ovarian and estrogen effects on NO synthase.  Am J Physiol . 1998;  275 H1845-H1856
  • 28 Huang A, Sun D, Kaley G, Koller A. Estrogen preserves regulation of shear stress by nitric oxide in arterioles of female hypertensive rats.  Hypertension . 1998;  31 309-314
  • 29 Chen Z, Yuhanna I S, Galcheva-Gargova Z, Karas R H, Mendelsohn M E, Shaul P W. Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen.  J Clin Invest . 1999;  103 401-406
  • 30 Kakucs R, Varbiro S, Szekacs B, Nadasy G L, Acs N, Monos E. Direct relaxing effect of estradiol-17beta and progesterone on rat saphenous artery.  Microvasc Res . 1998;  56 139-143
  • 31 Uchide T, Masuda H, Mitsui Y, Saida K. Gene expression of vasoactive intestinal contractor/endothelin-2 in ovary, uterus and embryo: comprehensive gene expression profiles of the endothelin ligand-receptor system revealed by semi-quantitative reverse transcription-polymerase chain reaction analysis in adult mouse tissues and during late embryonic development.  J Mol Endocrinol . 1999;  22 161-171
  • 32 Wight E, Küng C F, Moreau P, Takase H, Lüscher T F. Chronic blockade of nitric oxide synthase and endothelin receptors during pregnancy in the rat: effect on reactivity of the uterine artery in vitro.  J Soc Gynecol Invest . 1998;  5 288-295
  • 33 Sladek S M, Magness R, Conrad R P. Nitric oxide and pregnancy.  Am J Physiol . 1997;  272 R441-R463
  • 34 Bobadilla R A, Henkel C C, Henkel E C, Escalante B, Hong E. Possible involvement of endothelium-derived hyperpolarizing factor in vascular responses of abdominal aorta from pregnant rats.  Hypertension . 1997;  30 596-602
  • 35 Green D L, Alsip N L, Asher E F. Serotonin-induced dilation of small arterioles in striated muscle is mediated by nitric oxide in hypertensive but not normotensive rats.  FASEB J . 1997;  11 A42
  • 36 Alsip N L, Hornung J W, Asher E F. Reactivity of uterine arterioles is altered by pregnancy.  FASEB J . 1998;  12 A12
  • 37 Dalle Lucca J J, Alsip N L, Adeagbo A SO. Estrus cycle and pregnancy alter vascular reactivity of rat mesentery.  FASEB J . 1999;  13 A89
  • 38 Magness R R, Osei-Boaten K, Mitchell M D, Rosenfel C R. In vitro prostacyclin production by ovine uterine and systemic arteries: effects of AII.  J Clin Invest . 1985;  76 2206-2212
  • 39 Whitney E A, Ducsay C A, Valenzuella G J. Is uterine blood flow controlled locally or systemically in the pregnant rabbit?.  Am J Obstet Gynecol . 1993;  169 1507-1509
  • 40 Motta A B, Franchi A M, Gimeno A L, Gimeno M AF. Influences of oxytocin on the synthesis of prostaglandins by uterus from rats in different stages of the estrous cycle.  Prostaglandins Leukot Essent Fatty Acids . 1994;  51 133-139
  • 41 Amenta F, Vega J A, Ricci A, Collier W L. Localization of 5-hydroxytryptamine-like immunoreactive cells and nerve fibers in the rat female reproductive system.  Anat Rec . 1992;  233 4778-4784
  • 42 Clark K E, Mills E G, Otte T E, Stys S J. Effect of serotonin on uterine blood flow in pregnant and nonpregnant sheep.  Life Sci . 1980;  27 2655-2661
  • 43 Maigaard S, Forman A, Anderson K E. Relaxant and contractile effects of some amines and prostanoids in myometrial and vascular smooth muscle within the human uteroplacental unit.  Acta Physiol Scand . 1986;  128 33-40
  • 44 Alsip N L, Hornung J W, Saha P R, Hill J B, Asher E F. A new technique for studying the uterine microvasculature in the rat.  Am J Obstet Gynecol . 1996;  175 388-395
  • 45 Pierce J G, Parson T S. Glycoprotein hormones: structure and function.  Annu Rev Biochem . 1981;  50 465-495
  • 46 Bellisario R, Carlsen R B, Bahl O P. Human chorionic gonadotropin: linear amino acid sequence of the alpha subunit.  J Biol Chem . 1973;  248 6769-6809
  • 47 Gharib S D, Wierman M E, Shypnik M A, Chin W W. Molecular biology of pituitary gonadotropins.  Endocr Rev . 1990;  11 177-199
  • 48 Jameson J L, Hollenberg A N. Regulation of chorionic gonadotropin gene expression.  Endocr Rev . 1993;  14 203-222
  • 49 Keutmann H T. Receptor-binding regions in human glycoprotein hormones.  Mol Cell Endocrinol . 1992;  86 C1-C6
  • 50 Hoermann R, Spoettl G, Moncayo R, Mann K. Evidence for the presence of human chorionic gonadotropin (hCG) and free beta-subunit of hCG in the human pituitary.  J Clin Endocrinol Metab . 1990;  71 179-186
  • 51 Tabarelli M, Kofler R, Berger P, Wick G. Placental hormones: II. Immunofluorescence studies of the localization of prolactin/placental lactogen and human chorionic gonadotrophin receptors in human and rat placenta.  Placenta . 1983;  4 389-396
  • 52 Rao C V. Differential properties of human chorionic gonadotropin and human luteinizing hormone binding to plasma membranes of human bovine corpora lutea.  Acta Endocrinol . 1979;  90 696-710
  • 53 Alpaugh K, Indrapichate K, Abel J A, Rimerman R, Wiimalasena J. Purification and characterization of the human ovarian LH/hCG receptor and comparison of the properties of mammalian LH/hCG receptors.  Biochem Pharmacol . 1990;  40 2093-2103
  • 54 Probst W, Snyder L, Schuster D, Brosius J, Sealfon S. Sequence alignment of the G-protein coupled receptor superfamily.  DNA Cell Biol . 1992;  11 1-20
  • 55 Dufau M L. The luteinizing hormone receptor.  Annu Rev Physiol . 1998;  60 461-496
  • 56 Tsai-Morris C H, Wei W, Buvzko E. Promoter and regulatory regions of the rat luteinizing hormone receptor gene.  J Biol Chem . 1993;  268 18267-18271
  • 57 Jia X C, Oikawa M, Tanaka T. Expression of human luteinizing hormone (LH) receptor: interaction with LH and chorionic gonadotropin from human but not equine, rat, and ovine species.  Mol Endocrinol . 1991;  5 759-768
  • 58 Davis J S, Weakland L L, West L A, Farese R V. Luteinizing hormone stimulates the formation of inositol triphosphate and cyclic AMP in rat granulosa cells.  Biochem J . 1986;  238 597-604
  • 59 Kisielewska J, Flint A PF, Ziecik A J. Phospholipase C and adenylate cyclase signaling systems in the action of hCG on porcine myometrial smooth muscle cells.  J Endocrinol . 1996;  148 175-180
  • 60 Abramowitz J, Birnbaumer L. Temporal characteristics of gonadotropin interaction with rabbit luteal receptors and activation of adenylyl cyclase: comparison to the mode of action of catecholamine receptors.  Endocrinology . 1982;  111 970-976
  • 61 Indrapichate K, Meehan D, Lane T A. Biological actions of monoclonal luteinizing hormone/human chorionic gonadotropin receptor antibodies.  Biol Reprod . 1992;  46 265-278
  • 62 Rao C V, Mitra S, Carman F R. Characterization of gonadotropin binding sites in the intracellular organelles of bovine corpora lutea and comparison with plasma membrane sites.  J Biol Chem . 1981;  256 2628-2634
  • 63 Rao C V, Mitra S, Sanfilippo J S, Carman F R. The presence of gonadotropin binding sites in the intracellular organelles of human ovaries.  Am J Obstet Gynecol . 1981;  139 655-659
  • 64 Mitra S, Rao C V. Receptors for gonadotropins and prostaglandins in lysosomes of bovine corpora lutea.  Arch Biochem Biophys . 1978;  185 126-133
  • 65 Reshef E, Lei Z M, Rao C V, Pridham D D, Chegini N, Luborsky J L. The presence of gonadotropin receptors in nonpregnant human uterus, human placenta, fetal membranes, and decidua.  J Clin Endocrinol Metab . 1990;  70 421-430
  • 66 Jensen J D, Odell W D. Identification of LH/hCG receptors in rabbit uterus.  Proc Soc Exp Biol Med . 1988;  189 28-30
  • 67 Sawitske A L, Odell W D. Uterine binding sites for LH/ hCG can be modulated by hormone status in rabbits and rats.  Acta Endocrinol (Copenh) . 1991;  124 322-330
  • 68 Dercka K, Pietilä E M, Rajaniemi H J, Ziecik A J. Cycle dependent LH/hCG receptor gene expression in porcine nongonadal reproductive tissues.  J Physiol Pharmacol . 1995;  46 77-85
  • 69 Tao Y X, Lei Z M, Woodworth S H, Rao C V. Novel expression of luteinizing hormone/chorionic gonadotropin receptor gene in rat prostates.  Mol Cell Endocrinol . 1995;  111 R9-R12
  • 70 Környei J L, Lei Z M, Rao C V. Human myometrial smooth muscle cells are novel targets of direct regulation by human chorionic gonadotropin.  Biol Reprod . 1993;  49 1149-1157
  • 71 Lei Z M, Toth P, Rao C V, Pridham D. Novel coexpression of human chorionic gonadotropin (hCG)/human luteinizing hormone receptors and their ligand hCG in human fallopian tubes.  J Clin Endocrinol Metab . 1993;  77 863-872
  • 72 Lei Z M, Reshef E, Rao C V. The expression of human chorionic gonadotropin/luteinizing hormone receptors in human endometrial and myometrial blood vessels.  J Clin Endocrinol Metab . 1992;  75 651-659
  • 73 Toth P, Li X, Rao C V. Expression of functional human chorionic gonadotropin/human luteinizing hormone receptor gene in human uterine arteries.  J Clin Endocrinol Metab . 1994;  79 307-315
  • 74 Pabon J E, Li X, Lei Z M, Sanfilippo J S, Yussman M A, Rao C V. Novel presence of luteinizing hormone/chorionic gonadotropin receptors in human adrenal glands.  J Clin Endocrinol Metab . 1996;  81 2397-2400
  • 75 Pabon J E, Bird J S, Li X. Human skin contains luteinizing hormone/chorionic gonadotropin receptors.  J Clin Endocrinol Metab . 1996;  81 2738-2741
  • 76 Lin J, Lojun S, Lei Z M, Wu W X, Peiner S C, Rao C V. Lymphocytes from pregnant women express human chorionic gonadotropin/luteinizing hormone receptor gene.  Mol Cell Endocrinol . 1995;  111 R13-R17
  • 77 Lei Z M, Rao C V, Kornyei J L, Licht P, Hiatt E S. Novel expression of human chorionic gonadotropin/luteinizing hormone receptor gene in brain.  Endocrinology . 1993;  132 2262-2270
  • 78 Wurtman R J. An effect of luteinizing hormone on the fractional perfusion of the rat ovary.  Endocrinology . 1964;  75 927-933
  • 79 Bruce N W, Dimmitt S B. Ovarian venous blood flow in non-pregnant and pregnant rats.  J Endocrinol . 1977;  72 127-133
  • 80 Norjavaara E, Olofsson J, Gafvels M, Selstam G. Redistribution of ovarian blood flow after injection of human chorionic gonadotropin and luteinizing hormone in the adult pseudopregnant rat.  Endocrinology . 1987;  120 107-114
  • 81 Gafvels M, Olofsson S J, Norjavaara E, Selstam G. Hormonal influence on utero-ovarian blood flow distribution in the mid luteal pseudopregnant rat.  Acta Physiol Scand . 1988;  132 329-333
  • 82 Goswamy R K, Steptoe P C. Doppler ultrasound studies of the uterine artery in spontaneous ovarian cycles.  Hum Reprod . 1988;  3 721-726
  • 83 Toth P, Lukacs H, Paulin F, Rao C V. The role of LH/hCG receptors of uterine artery in the blood flow regulation in early pregnancy.  FASEB J . 1998;  12 A387
  • 84 Hermsteiner G J, Zoltan D R, Clapp III F J. Human chorionic gonadotrophin is a potent vasodilator of pre-arteriolar uterine and mesenteric vessels in pregnant and nonpregnant rats.  J Soc Gynecol Invest . 1997;  4 109A
  • 85 Ziecik A J, Golba G, Kisielewska J. Effect of human chorionic gonadotropin on uterine blood flow in intact and ovariectomized gilts.  Exp Clin Endocrinol Diabetes . 1996;  104 158-163
  • 86 Sanchez S, Bandi J C, Masta R. Blood flow measurement by the reference sample method with microsphere injection into the aorta: an accurate and easy approach.  Proc Soc Exp Biol Med . 1992;  200 375-377
  • 87 Hill J B, Jimenez A E, Passmore J C, Rao C V. Effect of human chorionic gonadotropin on reproductive organ blood flow in cycling rats.  Proc Soc Exp Biol Med . 1996;  211 94-99
  • 88 Varga B, Horvath E, Folly G, Stark E. Study of the luteinizing hormone-induced increase of ovarian blood flow during the estrus cycle in the rat.  Biol Reprod . 1985;  32 480-488
  • 89 Tanaka N, Espey L L, Odamura H. Increase in ovarian blood volume during ovulation in the gonadotropin-primed immature rat.  Biol Reprod . 1989;  40 762-768
  • 90 Wiltbank M C, Gallagher K P, Dysko R C, Keyes P L. Regulation of blood flow to the rabbit corpus luteum: effects of estradiol and human chorionic gonadotropin.  Endocrinology . 1987;  124 605-611
  • 91 Redmer D A, Grazul A T, Kirsch J D, Reynolds L P. Angiogenic activity of bovine corpora lutea at several stages of luteal development.  J Reprod Fertil . 1988;  82 627-634
  • 92 Neulen J, Taczek S, Pogorzelski M. Secretion of vascular endothelial growth factor/vascular permeability factor from human luteinized granulosa cells is human chorionic gonadotrophin dependent.  Mol Hum Reprod . 1998;  4 203-206
  • 93 Evans P, Wheeler T, Anthony F, Osmond C. Maternal serum vascular endothelial growth factor during early pregnancy.  Clin Sci . 1997;  92 567-571
  • 94 Pellicer A, Albert C, Mercader A, Bonilla-Musoles F, Remohi J, Simon C. The pathogenesis of ovarian hyperstimulation syndrome: in vivo studies investigating the role of interleukin-1 beta, interleukin-6, and vascular endothelial growth factor.  Fertil Steril . 1999;  71 482-489
  • 95 Keller S, Wienhard J, Lang U, Zygmunt M. Human chorionic gonadotropin (hCG) is a potent angiogenic factor for uterine endothelial cells in vitro. 5th IFPA Conference, Schladming, Austria
  • 96 Eta E, Ambrus G, Rao C V. Direct regulation of human myometrial contractions by human chorionic gonadotropin.  J Clin Endocrinol Metab . 1994;  79 1582-1586
  • 97 Ambrus G, Rao C V. Novel regulation of pregnant human myometrial smooth muscle cell gap junctions by human chorionic gonadotropin.  Endocrinology . 1994;  135 2772-2779
  • 98 Lüscher T F, Vanhoutte P M. The Endothelium: Modulator of Cardiovascular Function.  Boca Raton, FL: CRC Press 1990: 23-53
  • 99 Cicinelli E, Galantino P, Ignarro L J, Balzano G, Lograno M, Schonauer L M. Circulating levels of nitric oxide in fertile women in relation to the menstrual cycle.  Fertil Steril . 1996;  66 1036-1038
  • 100 Kim H-M, Moon Y-H. Human chorionic gonadotropin induces nitric oxide synthase mRNA in mouse peritoneal macrophages.  Biochem Biophys Res Commun . 1996;  229 548-552
  • 101 Goetz R M, Morano I, Calovini T, Studer R, Holtz J. Increased expression of endothelial constitutive nitric oxide synthase in rat aorta during pregnancy.  Biochem Biophys Res Commun . 1994;  205 905-910
  • 102 Ezimokhai M. The alterations of vascular smooth muscle reactivity in vitro by human chorionic gonadotrophin.  Res Exp Med . 1998;  198 187-198
  • 103 Bobadilla R A, Henkel C C, Henkel E C, Escalante B, Hong E. Possible involvement of endothelium-derived hyperpolarizing factor in vascular responses of abdominal aorta from pregnant rats.  Hypertension . 1997;  30 596-602
  • 104 Keyes L, Rodman D M, Currna-Everett D, Morris K, Moore L G. Effect of K+ATP channel inhibition on total and regional vascular resistance in guinea pig pregnancy.  Am J Physiol . 1998;  275 H680-H688
  • 105 Szoltys M, Galas J, Jablonka A, Tabaroqski Z. Some morphological and hormonal aspects of ovulation and superovulation in the rat.  J Endocrinol . 1994;  141 91-100
  • 106 Taylor M J, Clark C L. Detection of relaxin release by porcine luteal cells using a reverse hemolytic plaque assay: effect of prostaglandins E2 and F, human chorionic gonadotropin, and oxytocin.  Biol Reprod . 1987;  37 377-384
  • 107 Curry R E, Dean D D, Sanders S L, Pedigo N G, Jones P BC. The role of ovarian proteases and their inhibitors in ovulation.  Steroids . 1989;  54 501-521
  • 108 Sirois J, Richards J S. Purification and characterization of a novel, distinct isoform of prostaglandin endoperoxide synthase induced by human chorionic gonadotropin in granulosa cells of rat preovulatory follicles.  J Biol Chem . 1992;  267 6382-6388
  • 109 Espey L L, Tanaka N, Okamura H. Increase in ovarian leukotrienes during hormonally induced ovulation in the rat.  Am J Physiol . 1989;  256 E753-E759
  • 110 Evans P, Wheeler T, Anthony F, Osmond C. Maternal serum vascular endothelial growth factor during early pregnancy.  Clin Sci . 1997;  92 567-571
  • 111 Feral C, Reznik Y, LeGall S, Mahoudeau J, Corvol P, Leymarie P. Stimulation by hCG of ovarian inactive renin synthesis in rabbit preovulatory theca cells.  J Reprod Fertil . 1990;  89 407-414
  • 112 Ferruz J, Barria A, Galleguillos X, Lara H E. Release of norepinephrine from the rat ovary: local modulation by gonadotropins.  Biol Reprod . 1991;  45 582-597
  • 113 Magness R R, Rosenfeld C R, Carr B R. Protein kinase C in uterine and systemic arteries during ovarian cycle and pregnancy.  Am J Physiol . 1991;  260 E464-E470
  • 114 Hutchison S M, Tietz A E, Trostel K A, Schramm L P. Uterine arterial vasoconstriction mediated by ovarian nerves in virgin and postpartum rats.  Am J Physiol . 1997;  272 R318-R325
  • 115 Forsburg L S, Dowell R T. Regulation of female reproductive structure blood flow.  FASEB J . 1992;  6 A1738
    >