Horm Metab Res 2001; 33(7): 407-411
DOI: 10.1055/s-2001-16228
Original Clinical
© Georg Thieme Verlag Stuttgart · New York

Modulation of Corticosterone Availability to White Adipose Tissue of Lean and Obese Zucker Rats by Corticosteroid-Binding Globulin

M. M. Grasa, C. Cabot, J. A. Fernández-López, X. Remesar, M. Alemany
  • Centre de Recerca en Nutrició i Ciència dels Aliments, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
Further Information

Publication History

Publication Date:
31 December 2001 (online)

Corticosterone-binding (CB) capacity was determined in periovarian and subcutaneous white adipose tissue (WAT), as well as in plasma of lean and obese Zucker rats. In lean rats, plasma CB was twice the level of obese rats. In lean rat WAT, dexamethasone binding accounted for only 0.05 - 0.09 % of corticosterone binding, and aldosterone bound even less; in the obese rats, dexamethasone accounted for 0.2 - 0.3 % of corticosterone binding. Scatchard plots showed that KD for corticosterone was 3.1 nM (WAT) or 3.4 nM (plasma) in lean rats and 1.8 nM (WAT) or 1.5 nM (plasma) in obese rats. The total CB capacity in WAT was lower in the obese than in lean rats (47 - 50 %). Plasma non-esterified fatty acid levels were higher in obese rats. The results suggest that CBG may limit the access of glucocorticoids to adipocytes more weakly in obese rats because of the lower CBG. Fatty acids may increase the affinity of CBG for corticosterone, which would make WAT cells less accessible to circulating glucocorticoids. The modulation of CBG by fatty acids may protect fat reserves by decreasing the sensitivity of WAT to glucocorticoids.

References

  • 1 Walker C D, Scribner J S, Stern J S, Dallman M F. Obese Zucker (fa/fa) rats exhibit normal target sensitivity to corticosterone and increased drive to adrenocorticotropin during the diurnal trough.  Endocrinology. 1992;  131 2629-2637
  • 2 Tokuyama K, Himms-Hagen J. Enhanced acute response to corticosterone in genetically-obese (ob/ob) mice.  Am J Physiol. 1989;  257 E133-E138
  • 3 Green P K, Wilkinson C W, Woods S C. Intraventricular corticosterone increases the rate of body-weight gain in underweight adrenalectomized rats.  Endocrinology. 1992;  130 269-275
  • 4 King B M. Glucocorticoids and hypothalamic obesity.  Neurosci Biobehav Rev. 1988;  12 29-37
  • 5 Plotsky P M, Thrivikraman K V, Watts A G, Hauger R L. Hypothalamic-pituitary-adrenal axis function in the Zucker obese rat.  Endocrinology. 1992;  130 1931-1941
  • 6 Tokuyama K, Himms-Hagen J. Adrenalectomy prevents obesity in glutamate-treated mice.  Am J Physiol. 1989;  257 E139-E144
  • 7 Bazin R, Dupuy F, Krief M, Lavau M, Planche E. Deprivation of corticosterone does not prevent onset of obesity in Zucker (fa/fa) pups.  Am J Physiol. 1987;  252 E461-E466
  • 8 Feldkircher K M, Mistry A M, Romsos D R. Adrenalectomy reverses pre-existing obesity in adult genetically obese (ob/ob) mice.  Int J Obesity. 1996;  20 232-235
  • 9 Smith D F, Toft D O. Steroid receptors and their associated proteins.  Mol Endocrinol. 1993;  7 4-11
  • 10 Evans R M. The steroid and thyroid hormone receptor superfamily.  Science. 1988;  240 889-895
  • 11 Beaumont K, Fanestil D D. Characterization of rat brain aldosterone receptors reveals high affinity for corticosterone.  Endocrinology. 1983;  113 2043-2051
  • 12 Sheppard K, Funder J W. Type I receptors in parotid, colon and pituitary are aldosterone selective “in vivo”.  Am J Physiol. 1987;  253 E467-E471
  • 13 Pearce D, Yamamoto K R. Mineralocorticoid and glucocorticoid receptor activities distinguished by nonreceptor factors at a composite response element.  Science. 1993;  259 1161-1164
  • 14 Leake R E, Habib F. Steroid hormone receptors: assay and characterization.  Steroid hormones: a practical approach. In: Green B, Leake RL (eds). Oxford:; IRL Press, 1987: 67-92
  • 15 Westphal U. Steroid-protein interactions I. Monographs on Endocrinology.  New York:; Springer-Verlag, 1971 4: 375-433
  • 16 Dunn J F, Nisula B C, Rodbard D. Transport of steroid hormones: binding of 21 endogenous steroids to both testosterone-binding globulin and corticosteroid-binding globulin in human plasma.  J Clin Endocrinol Metab. 1981;  53 58-68
  • 17 Weiser J N, Do Y S, Feldman D. Synthesis and secretion of corticosteroid-binding globulin by rat liver.  J Clin Invest. 1979;  63 461-467
  • 18 Feldman D, Mondon C E, Horner J A, Weiser J N. Glucocorticoids and estrogen regulation of corticosteroid binding globulin production by rat liver.  Am J Physiol. 1979;  237 E493-E499
  • 19 Misao R, Hori M, Ichigo S, Fujimoto J, Tamaya T. corticosteroid-binding globulin messenger-RNA levels in human uterine endometrium.  Steroids. 1994;  59 603-607
  • 20 Hammond G L, Smith C l, Goping I S, Underbill D A, Harley M J, Reventos J, Musto N A, Gunsalus G L, Bardin C W. Primary structure of human corticosteroid-binding globulin deduced from hepatic and pulmonary cDNAs exhibits homology with serine-protease inhibitors.  Proc Nat Acad Sci USA. 1987;  84 5153-5157
  • 21 Grasa M M, Cabot C, Adán C, de Matteis R, Esteve M, Estruch J, Cinti S, Fernández-López J A, Remesar X, Alemany M. Modulation of corticosterone availability to white adipose tissue of lean and obese Zucker rats by corticosterone-binding protein.  Venice:; 8th International Congress on Obesity: Symposium on Endocrinology of Obesity, 1998: 30 (abstract)
  • 22 Rosner W. Plasma steroid-binding proteins.  Endocrinol Metab Clin N Amer. 1991;  20 697-721
  • 23 Strelchyonok O A, Awakumov G V. Interactions of human CBG with cell membranes.  J Steroid Biochem Mol Biol. 1991;  40 795-803
  • 24 Hammond G L, Smith C L, Paterson N AM, Sibbald W I. A role for corticosterone-binding globulin in delivery of cortisol to activated neutrophils.  J Clin Endocrinol Metab. 1990;  71 34-45
  • 25 Haourigui M, Vallette G, Martin M E, Sumida C, Benassayag C, Nuñez E A. In vivo effect of free fatty acids on the specific binding of glucocorticoids to corticosteroid-binding globulin and liver receptors in immature rats.  Steroids. 1994;  59 46-54
  • 26 Miller A H, Spencer R L, Stein M, McEwen B S. Adrenal steroid receptor binding in spleed and thymus after stress or dexamethasone.  Am J Physiol. 1990;  259 E405-E412
  • 27 Turner B. Tissue differences in the up-regulation of glucocorticoid-binding proteins in the rat.  Endocrinology. 1986;  118 1211-1216
  • 28 Fleshner M, Deak T, Spencer R L, Laudenslager M L, Watkins L R, Maier S F. A long term increase in basal levels of corticosterone and a decrease in corticosterone-binding globulin after acute stressor exposure.  Endocrinology. 1996;  136 5336-5342
  • 29 Bradford M M. A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding.  Anal Biochem. 1976;  72 248-254
  • 30 Scatchard G. The attractions of proteins for small molecules and ions.  Ann N Y Acad Sci. 1949;  51 660-672
  • 31 Björntorp P. Adipose tissue distribution and function.  Int J Obesity. 1991;  15 67-81
  • 32 Scrocchi L A, Hearn S A, Han V KM, Hammond G L. Corticosteroid-binding globulin biosynthesis in the mouse liver and kidney during postnatal development.  Endocrinology. 1993;  132 910-916
  • 33 Ksu B R, Khun R W. The role of the adrenal in generating the diurnal variation in circulating levels of corticosteroid-binding globulin in the rat.  Endocrinology. 1988;  122 421-426
  • 34 Nemoto T, Ohara-Nemoto Y, Denis M, Gustafsson J. The transformed glucocorticoid receptor has a lower steroid-binding affinity than the nontransformed receptor.  Biochemistry. 1990;  29 1880-1886
  • 35 Grasa M M, Cabot C, Adán C, Sanchis D, Balada F, Estruch J, Fernández-López J A, Remesar X, Alemany M. Effect of oleoyl-estrone administration on corticosterone binding to tissues of lean and obese Zucker rats.  J Steroid Biochem Mol Biol. 1998;  66 165-169
  • 36 McEwan B S, Wallach G, Magnus C. Corticosterone binding to hippocampus: immediate and delayed influences of the absence of adrenal secretion.  Brain Res. 1974;  70 321-334
  • 37 Grasa M M, Cabot C, Balada F, Virgili J, Sanchis D, Monserrat C, Fernández-López J A, Remesar X, Alemany M. Corticosterone binding to tissues of adrenalectomized lean and obese Zucker rats.  Horm Metab Res. 1998;  30 699-704
  • 38 Garrel D R. Corticosteroid-binding globulin during inflammation and burn-injury: nutritional modulation and clinical implications.  Horm Res. 1996;  45 245-251
  • 39 Björntorp P. Adipose tissue distribution and function.  Int J Obesity. 1991;  15 67-81
  • 40 Berdanier C D. Role of glucocorticoids in the regulation of lipogenesis.  FASEB J. 1989;  3 2179-2183
  • 41 Brindley D N. Role of glucocorticoids and fatty acids in the impairment of lipid metabolism observed in the metabolic syndrome.  Int J Obesity. 1995;  19 Suppl 1 569-575
  • 42 Divertie G D, Jensen M D, Miles J M. Stimulation of lipolysis in humans by physiological hypercortisolemia.  Diabetes. 1991;  40 1228-1232
  • 43 Bray G A. Corticosteroids and obesity. In: Vague J (ed). Metabolic complications of human obesities. Elsevier, 1985: 97-104

Prof. Dr. Marià Alemany

Grup Nitrogen-Obesitat
Centre de Recerca en Nutrició i Ciència dels Aliments
Departament de Bioquímica i Biologia Molecular
Facultat de Biologia, Universitat de Barcelona

Av. Diagonal, 645
08028 Barcelona
Spain


Phone: + 34 (93) 403 4606

Fax: + 34 (93) 402 1559

Email: alemany@bio.ub.es