Subscribe to RSS
DOI: 10.1055/s-2001-16745
Efficient Asymmetric Synthesis of Unnatural β-Amino Acids
Publication History
Publication Date:
28 September 2004 (online)
Abstract
The simple and highly enantioselective methanolysis of cyclic meso-anhydrides mediated by cinchona alkaloids leads to a broad variety of dicarboxylic acid mono-methyl esters with up to 99% ee. From these products, unnatural N-protected β-amino esters can be obtained by means of Curtius degradation of the corresponding acyl azides. Subsequent cleavage of the protecting groups leads to the free β-amino acids in excellent yields. By enantiomer differentiating opening of racemic anhydrides, synthetically highly useful regioisomeric amino acid esters become readily available.
Key words
asymmetric ring opening - chiral methyl esters - Curtius degradation - β-amino acids - enantiomer differentiating reaction
- 1 Review:
Drey CNC. In Chemistry and Biochemistry of Amino Acids, Peptides and Proteins Vol. 4:Weinstein B. Marcel Dekker; New York: 1977. p.242 - 2 Review:
Cole DC. Tetrahedron 1994, 50: 9517 -
3a
Matsunaga S.Fusetani N. J. Org. Chem. 1995, 60: 1177 -
3b
Trimurtulu G.Ohtani I.Patterson GML.Moore RE.Corbett TH.Valeriote FA.Demchik L. J. Am. Chem. Soc. 1995, 117: 1225 - 4
Umezawa H.Aoyagi T.Suda H.Hamada M.Takeuchi T. J. Antibiot. 1976, 29: 97 - Reviews:
-
5a
Morin RB.Gorman M. Chemistry and Biology of β-Lactam Antibiotics Academic Press; New York: 1982. -
5b
Lukacs G.Ohno M. Recent Progress in the Chemical Synthesis of Antibiotics and Related Natural Products Springer; Berlin: 1990. - 6 Review:
Georg GI. Bioorg. Med. Chem. Lett. 1993, 3: 2135 - 7
Burnett D.Caplen MA.Davis HR.Burrier RE.Clader JW. J. Med. Chem. 1994, 37: 1733 -
8a
Seebach D.Overhand M.Kühnle FNM.Martinoni B.Oberer L.Hommel U.Widmer H. Helv. Chim. Acta 1996, 79: 913 -
8b
Seebach D.Matthews JL. Chem. Commun. 1997, 2015 -
8c
Abele S.Vögtli K.Seebach D. Helv. Chim. Acta 1999, 82: 1539 -
9a
Appella D.Christianson LA.Karle IL.Powell DR.Gellman SH. J. Am. Chem. Soc. 1996, 118: 13071 -
9b
Appella D.Christianson LA.Klein DA.Powell DR.Huang X.Barchi J.Gellman SH. Nature 1997, 387: 381 -
9c
Appella D.Christianson LA.Karle IL.Powell DR.Gellman SH. J. Am. Chem. Soc. 1999, 121: 6206 -
9d
Barchi JJ.Huang X.Apella DH.Christianson LA.Durell SR.Gellman SH. J. Am. Chem. Soc. 2000, 122: 2711 -
9e
Huck BR.Langenhan JM.Gellman SH. Org. Lett. 1999, 1: 1717 -
9f
Appella DH.Barchi JJ.Durell SR.Gellman SH. J. Am. Chem. Soc. 1999, 121: 2309 -
9g
Wang X.Espinosa JF.Gellman SH. J. Am. Chem. Soc. 2000, 122: 4821 -
9h
Lee H.-S.LePlae PR.Porter EA.Gellman SH. J. Am. Chem. Soc. 2001, 123: 3597 -
10a Review:
Gellman SH. Acc. Chem. Res. 1998, 31: 173 -
10b For recent references, see also:
Winkler JD.Piatnitski EL.Mehlmann J.Kasparec J.Axelsen PH. Angew. Chem. Int. Ed. 2001, 40: 743 - For biological studies of β-amino acid containing peptides and β-peptide, see:
-
11a
Hintermann T.Seebach D. Chimia 1997, 51: 244 -
11b
Seebach D.Abele S.Schreiber JV.Martinoni B.Nussbaum AK.Schild H.Schulz H.Hennecke H.Wössner R.Bitsch F. Chimia 1998, 52: 734 -
11c
Werder M.Hauser H.Abele S.Seebach D. Helv. Chim. Acta 1999, 82: 1774 -
11d
Gademann K.Ernst M.Hoyer D.Seebach D. Angew. Chem. Int. Ed. 1999, 38: 1223 -
11e
Gademann K.Ernst M.Seebach D. Helv. Chim. Acta 2000, 83: 16 -
11f
Porter EA.Wang X.Lee H.-S.Weisblum B.Gellman SH. Nature 2000, 404: 565 -
11g
Hamuro Y.Schneider JP.De Grado WF. J. Am. Chem. Soc. 1999, 121: 12200 - Reviews:
-
12a
Cardillo G.Tomasini C. Chem. Soc. Rev. 1996, 117 -
12b
Sewald N. Amino Acids 1996, 11: 397 -
12c
Juaristi E. Enantioselective Synthesis of β-Amino Acids Wiley-VCH; New York: 1997. -
12d
Abele S.Seebach D. Eur. J. Org. Chem. 2000, 1 -
13a
Penke B.Czombos J.Baláspiri L.Petres J.Kovács K. Helv. Chim. Acta 1970, 53: 1057 -
13b
Podlech J.Seebach D. Liebigs Ann. Chem. 1995, 1217 -
13c
Podlech J.Seebach D. Angew. Chem., Int. Ed. Engl. 1995, 3: 471 -
14a
Bolm C.Gerlach A.Dinter CL. Synlett 1999, 195 -
14b
Bolm C.Schiffers I.Dinter CL.Gerlach A. J. Org. Chem. 2000, 65: 6984 - For applications of the protocol reported in ref. 14, see:
-
15a
Bernardi A.Arosio D.Dellavecchia D.Micheli F. Tetrahedron: Asymmetry 1999, 10: 3403 -
15b
Starr JT.Koch G.Carreira EM. J. Am. Chem. Soc. 2000, 122: 8793 - For previous studies of this transformation, see:
-
16a
Aitken RA.Gopal J. Tetrahedron: Asymmetry 1990, 1: 517 -
16b
Aitken RA.Gopal J.Hirst JA. J. Chem Soc., Chem. Commun. 1988, 632 -
16c
Hiratake J.Inagaki M.Yamamoto Y.Oda J. J. Chem. Soc., Perkin Trans. 1 1987, 1053 -
16d
Hiratake J.Yamamoto Y.Oda J. J. Chem. Soc., Chem. Commun. 1985, 1717 - For recent modifications, see:
-
17a
Chen Y.Tian S.-K.Deng L. J. Am. Chem. Soc. 2000, 122: 9542 -
17b
Uozumi Y.Yasashima K.Miyachi T.Nagai S.-i. Tetrahedron Lett. 2001, 42: 411 - 18 For a general review on desymmetrization reactions:
Willis MC. J. Chem. Soc., Perkin Trans. 1 1999, 175 - 19 Alternatively, the enantiomerically enriched dicarboxylic acid monoesters can be prepared by enzyme-catalyzed hydrolysis of meso-diesters. For a recent review, see:
Bornscheuer UT.Kazlauskas RJ. Hydrolases in Organic Synthesis - Regio- and Stereoselective Biotransformations Wiley-VCH; Weinheim: 1999. - 21 Previously, difficulties in the separation of compound 4 from the excess of benzyl alcohol were reported (cf.:
Appella DH.LePlae PR.Raguse TL.Gellman SH. J. Org. Chem. 2000, 65: 4766 ). All amino esters described here were purified by column chromatography (see experimental section)and NMR spectroscopy confirmed the complete removal of the alcohol - 22
Martín-Vilà M.Minguillón C.Ortuño RM. Tetrahedron: Asymmetry 1998, 9: 4291 -
24a
Bondi A. J. Phys. Chem. 1964, 68: 441 -
24b
Allinger NL.Hirsch JA.Miller MA.Tyminski IJ.Van-Catledge F. J. Am. Chem. Soc. 1968, 90: 1199 - For recent examples, see:
-
25a
ref. 15a
-
25b
Maruoka K.Akakura M.Saito S.Ooi T.Yamamoto H. J. Am. Chem. Soc. 1994, 116: 6153 -
25c
Borzilleri RM.Weinreb SM. J. Am. Chem. Soc. 1994, 116: 9789 - 26 In the syntheses of S-1452 metabolites, ent-10 is a key intermediate. See:
Watanabe F.Matsuura T.Shirahase K.Ohtani M. Chem. Pharm. Bull. 1991, 39: 2842 -
27a
Davies SG.Ichihara O.Walters IAS. Synlett 1993, 461 -
27b
Davies SG.Ichihara O.Lenoir I.Walters IAS. J. Chem. Soc., Perkin Trans. 1 1994, 1411 -
28a
Konosu T.Oida S. Chem. Pharm. Bull. 1993, 41: 1012 -
28b
Cimarelli C.Palmieri G. Tetrahedron: Asymmetry 1994, 5: 1455 -
28c
Cimarelli C.Palmieri G. J. Org. Chem. 1996, 61: 5557 -
28d
Kanerva LT.Csomós P.Sundholm O.Bernáth G.Fülöp F. Tetrahedron: Asymmetry 1996, 7: 1705 -
28e
Csomós P.Kanerva LT.Bernáth G.Fülöp F. Tetrahedron: Asymmetry 1996, 7: 1789 -
28f
Theil F.Ballschuh S. Tetrahedron: Asymmetry 1996, 7: 3565 -
28g
Evans C.McCague R.Roberts SM.Sutherland AG.Wisdom R. J. Chem. Soc., Perkin Trans. 1 1991, 2276 - 30
Harmat NJS.Di Bugno C.Criscuoli M.Giorgi R.Lippi A.Martinelli A.Monti S.Subissi A. Bioorg. Med. Chem. Lett. 1998, 8: 1249 -
31a
Militzer HC,Matzke M,Mittendorf J,Schmidt A,Ziegelbauer K, andSchoenfeld W. inventors; Patent DE4443890A1. -
- 33
Weygand F.Hunger K. Chem. Ber. 1962, 95: 1 - 34
Patchornik A.Amit B.Woodward RB. J. Am. Chem. Soc. 1970, 92: 6333 - 35
Carpino LA.Tunga A. J. Org. Chem. 1986, 51: 1932 -
36a
Canonne P.Akssira M.Dahdou A.Kasmi H.Boumzebra M. Tetrahedron 1993, 49: 1985 -
36b
Akssira M.Dahdou A.Kasmi H. Bull. Soc. Chim. Belg. 1993, 102: 227 - 38
Pátek M.Drake B.Lebl M. Tetrahedron Lett. 1994, 35: 9169 -
39a
Seebach D.Jaeschke G.Gottwald K.Matsuda K.Formisano R.Chaplin DA. Tetrahedron 1997, 53: 7539 -
39b See also:
Jaeschke G.Seebach D. J. Org. Chem. 1998, 63: 1190 -
39c
Ramón DJ.Guillena G.Seebach D. Helv. Chim. Acta 1996, 79: 875 - 40
Izumi Y.Tai A. Stereo-Differentiating Reactions Kodansha Ltd.; Tokyo: 1977. - 41
Kagan HB. Croat. Chem. Acta 1996, 69: 669 -
42a
Alphand V.Archelas A.Furstoss R. Tetrahedron Lett. 1989, 30: 3663 -
42b
Petit F.Furstoss R. Tetrahedron: Asymmetry 1993, 4: 1341 - 43
Bolm C.Schlingloff G. J. Chem. Soc., Chem. Commun. 1995, 1247 -
44a
Back TG.Nakajima K. Tetrahedron Lett. 1997, 38: 989 -
44b
Back TG.Nakajima K. J. Org. Chem. 1998, 63: 6566 -
46a
Frank RL.Emmick RD.Johnson RS. J. Am. Chem. Soc. 1947, 69: 2313 -
46b
Craig D. J. Am. Chem. Soc. 1950, 72: 1648 -
47a
Di Bugno C,Giorgi R, andHarmat N. inventors; Patent WO9803540A2. -
-
48a
Kobayashi S.Kamiyama K.Iimori T.Ohno M. Tetrahedron Lett. 1984, 25: 2557 -
48b
Kobayashi S.Kamiyama K.Ohno M. Chem. Pharm. Bull. 1990, 38: 350
References
(a) See also: Martín-Vilà, M.; Muray, E.; Aguado, G.P.; Alvarez-Larena, A.; Branchadell, V.; Minguillón, C.; Giralt, E.; Ortuño, R.M. Tetrahedron: Asymmetry 2000, 11, 3569.
(b) Such a sequence has also been used for the preparation of acyclic β-amino acids. For a recent summary of citations, see within ref. 12d.
X-ray crystal structure analysis of 4: formula C16H19O4N; M = 289.33, colorless crystal 0.3 × 0.3 × 0.3 mm, a = 5.3448(3), b = 15.878(2), c = 17.199(3) Å, V = 1459.6(8) Å3, ρcalcd = 1.317 gcm-1, µ = 7.39 cm-1, Z = 4, orthorhombic, space group P212121 (No. 19), λ = 1.54179 Å, T = 180 K, ω/2θ scans, 3666 reflections collected, 3013 independent and 2371 observed reflections [I ≥ 2 σ(I)], 266 refined parameters, R1 = 0.057, wR2 = 0.052, residual electron density -0.35/0.39 eÅ-3, hydrogens located and refined isotropically.
29Attempts to hydrolyse the ester moiety of ent-2 under basic conditions led to epimerization.
32MOZ = 4-MeO-C6H4CH2CO2-; (2-NO2)-Z = 2-NO2-C6H4CH2CO2-; hZ = C6H5CH2CH2CO2-.
37The failure of this reaction is in agreement with the observations by Gellman, see ref. 21.
45X-ray crystal structure analysis of 26: formula C17H21O4N; M = 303.35, colorless crystal 0.24 × 0.24 × 1.00 mm, a = 5.242(4), b = 9.344(4), c = 32.12(2) Å, V = 1573.28 Å3, ρcalcd = 1.281 gcm-1, µ = 7.45 cm-1, Z = 4, orthorhombic, space group P212121 (No. 19), λ = 1.54179 Å, T = 150 K, ω/2θ scans, 3884 reflections collected, 3236 independent and 2924 observed reflections [I ≥ 2 σ(I)], 199 refined parameters, R1 = 0.064, wR2 = 0.085, residual electron density -0.57/0.45 eÅ-3, hydrogens located in part. Us fixed at 1.5 times U of the relevant Leavy atoms prion to final refinement of the heavy atoms not refined.