Thorac Cardiovasc Surg 2001; 49(5): 259-267
DOI: 10.1055/s-2001-17795
Editorial
© Georg Thieme Verlag Stuttgart · New York

Does a Suitable Animal Model for Research on Partial Left Ventriculectomy Exist?

Animal Models for PLV[1] S. Christiansen1 , U. R. Jahn2 , J. Stypmann3 , K. Redmann4 , H. H. Scheld1 , D. Hammel1
  • 1Klinik und Poliklinik fur Thorax-, Herz- und Gefäßchirurgie
  • 2Klinik für Anästhesiologie und operative Intensivmedizin
  • 3Klinik und Poliklinik für Kardiologie und Angiologie
  • 4Experimentelle Thorax-, Herz- und Gefäßchirurgie
    Westfälische Wilhelms-Universität, Münster, Germany
Further Information

Publication History

Publication Date:
15 October 2001 (online)

Partial left ventriculectomy is a new surgical option quickly introduced into clinical use worldwide for treating end-stage heart failure in patients with dilated cardiomyopathy. Due to the overwhelming success of this new kind of surgical treatment for dilated cardiomyopathy, experimental research on the physiological and pathophysiological basis was initially not performed. Now, demands for an appropriate animal model have arisen more and more since the outcome of patients treated by partial left ventriculectomy has differed considerably. This review summarizes available experimental models for heart failure in large animals, and discusses their suitability for research on partial left ventriculectomy.

1 This work was supported by the Deutsche Stiftung für Herzforschung, Frankfurt, Germany

References

  • 1 Batista R JV, Santos J LV, Takeshita N, Bocchmo L, Lima P N, Cunha M A. Partial Left Ventriculectomy to improve Left Ventricular Function in End-Stage Heart Disease.  J Card Surg. 1996;  11 96-97
  • 2 Angelini G D. Left Ventricular Volume Reduction For End Stage Heart Failure: Preliminary Clinical Results And Proposal Of An International Multicenter Registry And Prospective Study. Surgical Options For End-Stage Heart Failure. 1996 117
  • 3 Angelini G D, Pryn S, Mehta D. et al . Left-ventricular-volume reduction for end-stage heart failure.  Lancet. 1997;  350 489
  • 4 Batista R. Partial left ventriculectomy - the Batista procedure.  Eur J Cardiothorac Surg. 1999;  15 (Suppl 1) S12-S19
  • 5 Batista R JV, Nery P, Bochino L. et al .Partial Left Ventriculectomy to Treat End-Stage Heart Disease. Abstracts of the 33rd Annual Meeting of The Society of Thoracic Surgeons 1997 60
  • 6 Batista R JV, Verde J, Nery P. et al . Partial left ventriculectomy to treat end-stage heart disease.  Ann Thorac Surg. 1997;  64 634-638
  • 7 Bestetti R B, Bombonato R. Brasil JC. Partial ventriculectomy - a promising treatment for patients with end-stage congestive heart failure.  Circulation. 1997;  96 3816
  • 8 Bridges C R. The Batista procedure for dilated cardiomyopathy - an analysis that goes beyond “hand waving”.  J Thorac Cardiovasc Surg. 1998;  116 369-371
  • 9 Bryan A J, Angelini G D. Left ventricular volume reduction for end-stage heart failure: new horizon or false dawn?.  Br J Hosp Med. 1997;  57 323-325
  • 10 Carpentier A. Does surgical reduction of heart size reduce heart failure?.  Lancet. 1997;  350 456
  • 11 Chanda J, Kuribayashi R, Abe T. Ventricular remodelling in dilated cardiomyopathy.  Lancet. 1997 ;  350 1705-1706
  • 12 Chanda J, Kuribayashi R, Abe T. Batista operation for dilated cardiomyopathy - a physiologic concept.  J Thorac Cardiovasc Surg. 1998;  115 261-262
  • 13 Fukamachi K, McCarthy P M, Starling R C, Young J B. Effects of partial left ventriculectomy on cardiac performance.  Circulation. 1998;  98 2101-2102
  • 14 Konertz W, Khoynezhad A, Sidiropoulos A, Borak V, Baumann G. Early and intermediate results of left ventricular reduction surgery.  Eur J Cardiothorac Surg. 1999;  15 (Suppl 1) S26-S30
  • 15 McCarthy P M. Ventricular remodeling: hype or hope.  Nature Med. 1996;  2 859-860
  • 16 Replogle R L, Kaiser G C, Cohn L H. et al . Left ventricular reduction surgery (Society position paper).  Ann Thorac Surg. 1997;  63 909-910
  • 17 Dickstein M L, Spotnitz H M, Rose E A, Burkhoff D. Heart Reduction Surgery: An Analysis Of The Impact On Cardiac Function.  J Thorac Cardiovasc Surg. 1997;  113 1032-1040
  • 18 Ratcliffe M B, Hong J, Salahieh A, Ruch S, Wallace A W. The effect of ventricular volume reduction surgery in the dilated, poorly contractile left ventricle: a simple finite element analysis.  J Thorac Cardiovasc Surg. 1998;  116 566-577
  • 19 Spotnitz H M. Macro Design, structure, and mechanics of the left ventricle.  J Thorac Cardiovasc Surg. 2000;  119 1053-1077
  • 20 Smith H J, Nuttall A. Experimental models of heart failure.  Cardiovasc Res. 1985;  19 181-186
  • 21 Iannini J P, Spinale F G. The Identification of Contributory Mechanisms for the Development and Progression of Congestive Heart Failure in Animal Models.  J Heart Lung Transplant. 1996;  15 1138-1150
  • 22 lyengar S RK, Charrett E JP, Iyengar C KS, Lynn R B. An experimental model with left ventricular hypertrophy caused by subcoronary aortic stenosis in dogs.  J Thorac Cardiovasc Surg. 1973;  66 371-379
  • 23 Carabello B A, Mee R, Collins J J, Kloner R A, Levin D, Grossman W. Contractile function in chronic gradually developing subcoronary aortic stenosis.  Am J Physiol. 1981;  240 H80-H86
  • 24 Kleinman L H, Wechsler A S, Rembert J C, Fedor J M, Greenfield J C. A reproducible model of moderate to severe concentric left ventricular hypertrophy.  Am J Physiol. 1978;  234 H515-H519
  • 25 O'Keefe D D, Hoffman J IE, Cheitlin R, O'Neill M J, Allard J R, Shapkin E. Coronary blood flow in experimental canine left ventricular hypertrophy.  Circ Res. 1978;  43 43-51
  • 26 Copeland J G, Maron B J, Luka N L, Ferrans V J, Michaelis L L. Experimental production of aortic valvular stenosis.  J Thorac Cardiovasc Surg. 1974;  67 371-379
  • 27 Allard J R, O'Neill M J, Hoffmann J IE. Valvar subcoronary aortic stenosis in dogs.  Am J Physiol. 1979;  236 H780-H784
  • 28 Weinberg E O, Schoen F J, George D. et al . Angiotensin-Converting Enzyme Inhibition Prolongs Survival and Modifies the Transition to Heart Failure in Rats With Pressure Overload Hypertrophy Due to Ascending Aortic Stenosis.  Circulation. 1994;  90 1410-1422
  • 29 Hufnagel C A, Roe B B, Barger A C. A technique for producing pulmonary artery stenosis.  Surgery. 1951;  29 77-81
  • 30 Welham K C, Silove E D, Wyse R K H. Experimental right ventricular hypertrophy and failure in swine.  Cardiovasc Res. 1978;  12 61-65
  • 31 Rastelli G C, Hallermann F J, Fellows J L, Swan H J C. Cardiac performance during exercise in dogs with constricted pulmonary artery.  Circ Res. 1963;  13 410-419
  • 32 McCanon D M, Krol B, Bruce D W. A clamp for precisely controlled progressive constriction of the pulmonary artery.  J Appl Physiol. 1967;  22 171-173
  • 33 Laks M M, Morady F, Garner D, Swan H J C. Relation of ventricular volume, compliance, and mass in the normal and pulmonary arterial banded canine heart.  Cardiovasc Res. 1972;  6 187-198
  • 34 Ferrario C M. Contribution of cardiac output and peripheral resistance to experimental renal hypertension.  Am J Physiol. 1974;  226 711-717
  • 35 Ferrario C M, Blumle C, Nadzam G R, McCubbin J W. An externally adjustable renal artery clamp.  J Appl Physiol. 1971;  31 635-637
  • 36 Ferrario C M, Page I H. Current views concerning cardiac output in the genesis of experimental hypertension.  Circ Res. 1978;  43 821-831
  • 37 Conway J, Hatton R. Development of deoxycorticosterone acetate hypertension in the dog.  Circ Res. 1978;  43 I-82-I-86
  • 38 Newman W H. A depressed response of left ventricular contractile force to isoproterenol and norepinephrine in dogs with congestive heart failure.  Am Heart J. 1977;  93 216-221
  • 39 Pinsky W W, Lewis R M, Hartley C J, Entman M L. Permanent changes of ventricular contractility and compliance in chronic volume overload.  Am J Physiol. 1979;  237 H575-H583
  • 40 Bolling S F, Deeb M, Brunsting L A, Bach D S. Early Outcome of mitral valve reconstruction in patients with end-stage cardiomyopathy.  J Thorac Cardiovasc Surg. 1995;  109 676-683
  • 41 Spring D A, Rowe G G. A device for production of aortic insufficiency in intact experimental animals.  J Appl Physiol. 1970;  29 538-540
  • 42 Alai J, Adam A, Ven F, Jamison W L. Production of aortic insufficiency with a study of arterial tracings.  Surgery. 1954;  36 237-242
  • 43 Feldman R L, Nichols W W, Thompson L V, Paley D M, Goldman R, Conti C R, Pepine C J. Left ventricular changes resulting from chronic aortic regurgitation in dogs.  Am J Cardiol. 1984;  54 890-892
  • 44 Moscovitz H L, Wilder R J. The pressure events of the cardiac cycle in the dog aortic valve lesions.  Am Heart J. 1957;  54 572-579
  • 45 Reimold S C, Byrne J G, Caguioa E S, Lee C C, Laurence R G, Peigh P S, Cohn L H, Lee R T. Load dependence of the effective regurgitant orifice area in a sheep model of aortic regurgitation.  JACC. 1991;  18 1085-1090
  • 46 Shiota T, Jones M, Delabays A, Li X, Yamada I, Ishii M, Acar P, Holcomb S, Pandian N G, Sahn D J. Direct Measurement of three-dimensionally reconstructed flow convergence surface area and regurgitant flow in aortic regurgitation.  Circulation. 1997;  96 3687-3695
  • 47 Slordahl S A, Piene H. Haemodynamic effects of arterial compliance, total peripheral resistance, and glyceryl trinitrate on regurgitant volume in aortic regurgitation.  Cardiovasc Res. 1991;  25 869-874
  • 48 Leshin S J, Horwitz L D. A closed-chest catheter technique for producing aortic regurgitation in dogs.  J Appl Physiol. 1972;  33 693-695
  • 49 Spinale F G, Ishihra K, Zile M, DeFryte G, Crawford F A, Carabello B A. Structural basis for changes in left ventricular function and geometry because of chronic mitral regurgitation and after correction of volume overload.  J Thorac Cardiovasc Surg. 1993;  106 1147-1157
  • 50 Barger A C, Roe B B, Richardson G S. Relation of valvular lesions of exercise to auricular pressure, work tolerance, and to development of chronic, congestive failure in dogs.  Am J Physiol. 1952;  169 384-399
  • 51 Mertes H, Segar D S, Johnson M, Ryan T. Sawada SG, Feigenbaum H. Assessment of Hibernating Myocardium by Dobutamine Stimulation in a Canine Model.  JACC. 1995;  261 348-1355
  • 52 Kramer C M, Lima J AC, Reichek N, Ferrari V A, Llaneras M R, Palmon L C, Yeh I T, Tallant B, Axel L. Regional differences in function within noninfarcted myocardium during left ventricular remodeling.  Circulation. 1993;  88 1279-1288
  • 53 Bolukoglu H, Liedtke J, Nellis S H, Eggleston A M, Subramanian R, Renstrom B. An animal model of chronic coronary stenosis resulting in hibernating myocardium.  Am J Physiol. 1992;  263 H20-H29
  • 54 David M S, Charrette E JP, Lynn R B. Experimental coronary artery thrombosis for production of cardiogenic shock.  Can J Surg. 1970;  13 189-195
  • 55 Salazar A E. Experimental myocardial infarction. Induction of Coronary Thrombosis in the Intact Closed-Chest Dog.  Circ Res. 1961;  9 1351-1356
  • 56 Kordenat R K, Kesdi P, Stanley E L. A new catheter technique for producing experimental coronary thrombosis and selective coronary visualization.  Am Heart J. 1972;  83 360-364
  • 57 Lluch S, Moguilevsku H C, Pietra G, Shaffer A B, Hirsch L J, Fishman A P. A reproducible model of cardiogenic shock in the dog.  Circulation. 1969;  39 205-218
  • 58 Guzman S V, Swenson E, Mitchell R. Mechanism of cardiogenic shock.  Circ Res. 1962;  10 746-752
  • 59 Szamosi A. Experimental occlusion of the coronary arteries in the closed-chest dog - a selective method.  Acta Radiol Diagn. 1972;  12 545-553
  • 60 Hammer J, Pisa Z. A method of isolated gradual occlusion of a main branch of a coronary artery in closed-chest dogs.  Am Heart J. 1962;  64 67-70
  • 61 Cohen M V, Eldh P. Experimental myocardial infarction in the closed-chest dog: controlled production of large or small areas of necrosis.  Am Heart J. 1973;  86 798-804
  • 62 Gensini G G, Palacio A, Buonanno C. Kelly AE, Muller WF. Superselective coronary- occlusion under cinefluorographic control in experimental animals: technique and results.  Circulation. 1966;  34 III108-III109
  • 63 Ribeilima J. Selective embolisation of the coronary arteries. A hemodynamic, metabolic and radiologic study.  Proc Soc Exp Biol Med. 1964;  117 367-369
  • 64 Khomaziuk A I, Nescheret A P, Kuzminskii N P. Some new ways of experimental research in myocardial infarction.  Kardiologia. 1965;  5 19-23
  • 65 Sabbah H N, Stein P D, Kono T. et al . A canine model of chronic heart failure produced by multiple sequential coronary microembolizations.  Am J Physiol. 1991;  260 H1379-H1384
  • 66 Goldstein S, Sabbah H N. Chronic Heart Failure in Dogs Created by Multiple Sequential Intracoronary Microembolizations.  Heart Failure. 1995;  11 196-206
  • 67 Weber K T, Malinin T I, Dennison B H, Faqua J M, Speaker D M, Hastings F W. Experimental myocardial ischemia and infarction.  Am J Cardiol. 1972;  29 793-802
  • 68 Nakhjavan F K, Shedrovilzky H, Goldberg H. Experimental myocardial infarction in dogs: description of a closed chest technique.  Circulation. 1968;  38 777-782
  • 69 Johnsrude I S, Goodrich J K. An experimental partial occlusive device for vessels delivered by arterial catheter.  Am Heart J. 1969;  77 805-808
  • 70 Nuttall A, Smith H J, Loveday B E. A clinically relevant model of heart failure: effects of ticlopidine.  Cardiovasc Res. 1985;  12 187-192
  • 71 van Vleet J F, Greenwood L A, Ferrans V J. Pathologic Features of Adriamycin Toxicosis in young pigs: Nonskeletal Lesions.  Am J Vet Res. 1979;  40 1537-1552
  • 72 Magovern J A, Christlieb I Y, Badylak S F, Lantz G C, Kao R L. A Model of Left Ventricular Dysfunction Caused by Intracoronary Adriamycin.  Ann Thorac Surg. 1992;  53 861-863
  • 73 Shah H R, Vaynblat M, Ramdev G, Cunningham J N, Chiavarelli M. Experimental cardiomyopathy as a model of chronic heart failure.  J Invest Surg. 1997 ;  10 387-396
  • 74 Toyoda Y, Okada M, Kashem M A. A canine model of dilated cardiomyopathy induced by a repetitive intracoronary doxorubicin administration.  J Thorac Cardiovasc Surg. 1998;  115 1367-1373
  • 75 Jaenke R S. Delayed and progressive myocardial lesions after adriamycin administration in the rabbit.  Cancer Res. 1976;  36 2958-2966
  • 76 Fajardo L F, Stewart J R. Experimental radiation induced heart disease. I. Light microscopic studies.  Am J Pathol. 1970;  59 299-316
  • 77 Fajardo L F, Stewart J R. Pathogenesis of Radiation-Induced Myocardial Fibrosis.  Lab Invest. 1973;  29 244-257
  • 78 Fajardo L F, Stewart J R, Cohn K E. Morphology of Radiation-Induced Heart Disease.  Arch Path. 1968;  86 512-519
  • 79 Gillette E L, McChesney S L, Hoopes P J. Isoeffect curves for radiation induced cardiomyopathy in the dog.  Int J Radiat Oncol Biol Phys. 1985;  11 2091-2097
  • 80 Gillette S M. Gillette EL, Shida T, Boon J, Miller CW, Powers BE. Late radiation response of canine mediastinal tissues.  Radiother Oncol. 1992;  23 41-52
  • 81 Carlyle P F, Cohn J N. A nonsurgical canine model of chronic left ventricular myocardial dysfunction.  Am J Physiol. 1983;  244 H769-H774
  • 82 Hendrick D A, Smith A C, Kratz J M, Crawford F A, Spinale F G. The pig as a model of tachycardia and dilated cardiomyopathy.  Lab Anim Sci. 1990;  40 495-501
  • 83 Vatner D E, Sato N, Kiuchi K, Shannon R P, Vatner S F. Decrease in Myocardial Ryanodine Receptors and Altered Excitation-Contraction Coupling Early in the Development of Heart Failure.  Circulation. 1994;  90 1423-1430
  • 84 Shannon R P. The relationship between altered load and impaired diastolic function in conscious dogs with pacing induced heart failure.  Adv Exp Med Biol. 1993;  346 337-345
  • 85 Shannon R P, Komamura K, Shen Y -T, Bishop S P, Vatner S F. Impaired regional subendocardial coronary flow reserve in conscious dogs with pacing-induced heart failure.  Am J Physiol. 1993;  265 H801-809
  • 86 Komamura K, Shannon R P, Ihara T. et al . Exhaustion of Frank-Starling mechanism in conscious dogs with heart failure.  Am J Physiol. 1993;  265 H 1119-1131
  • 87 Patel H J, Pilla J J, Pohdon D J. et al . Ten weeks of rapid ventricular pacing creates a long-term model of left ventricular dysfunction.  J Thorac Cardiovasc Surg. 2000;  119 834-841
  • 88 Laks M M, Morady F, Swan H JC. Myocardial hypertrophy produced by chronic infusion of subhypertensive doses of norepinephrine in the dog.  Chest. 1973 ;  64 75-78
  • 89 Maggs P R, Nener T PE, Ellis F H. Effect of left ventricular akinesis on cardiac performance: experimental study using a new model.  Circulation. 1979;  59 1019-1024
  • 90 Baretti  R, Mizuno A, Buckberg G D, Child J S. Batista procedure: elliptical modeling against spherical distension.  Eur J Cardiothorac Surg. 2000 ;  17 52-57
  • 91 Batista R JV. Partial ventriculectomy for diameter heart surgery.  BAM. 1997;  7 57-60
  • 92 Starr I, Jeffers W A, Meade R H. The absence of conspicuous increments of venous pressure after severe damage to the right ventricle of the dog, with a discussion of the relation between clinical congestive failure and heart disease.  Am Heart J. 1943;  26 291-301

1 This work was supported by the Deutsche Stiftung für Herzforschung, Frankfurt, Germany

Dr. med. Stefan Christiansen

Klinik und Poliklinik für Thorax-, Herz- und Gefäßchirurgie
Westfälische Wilhelms-Universität Münster
Universität Münster

Albert-Schweitzer-Straße 33

48149 Münster

Germany

Phone: (+49) (251) 834-74 01

Fax: (+49) (251) 834-83 16