Horm Metab Res 2001; 33(12): 721-726
DOI: 10.1055/s-2001-19136
Original Clinical
© Georg Thieme Verlag Stuttgart · New York

The Antihyperglycemic Effect of Estrone Sulfate in Genetically Obese-Diabetic (ob/ob) Mice is Associated with Reduced Hepatic Glucose-6-Phosphatase

E. B. Borthwick 1 2 , P. M. Houston 1 , M. W. H. Coughtrie 2 , A. Burchell 1
  • 1 Department of Obstetrics & Gynecology, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, UK
  • 2 Department of Molecular & Cellular Pathology, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, UK
Further Information

Publication History

Publication Date:
18 December 2001 (online)

Excessive glucose production by the liver contributes significantly to diabetic hyperglycemia. The enzyme system glucose-6-phosphatase plays a key role in regulating hepatic glucose production and therefore its inhibition is a potential therapeutic target for the correction of hyperglycemia. It has previously been shown that sulfated steroids, such as estrone sulfate and dehydroepiandrosterone sulfate, inhibit the glucose-6-phosphatase system in vitro, principally through inhibition of endoplasmic reticulum glucose-6-phosphate transport. We report here that in the obese/diabetic ob/ob mouse model, orally administered estrone sulfate reduces the abnormally elevated hepatic glucose-6-phosphatase enzyme activity and enzyme protein levels that are characteristic in the ob/ob mouse, and that this reduction is associated with normalization of blood glucose levels. Other sulfated and non-sulfated steroids also reduced, to a lesser extent, glucose-6-phosphatase enzyme activity - with the exception of dehydroepiandrosterone sulfate, which had no apparent effect on this system in ob/ob mice. Estrone sulfate is therefore an effective antihyperglycemic agent in ob/ob mice, and the glucose-6-phosphatase system can be successfully targeted for the therapeutic management of hyperglycemia in this animal model of non-insulin-dependent diabetes mellitus.

References

  • 1 De Fronzo R A. The triumverate: b-cell, muscle, liver. A collusion responsible for NIDDM.  Diabetes. 1988;  37 667-687
  • 2 Foster D W. Diabetes mellitus. In: Stanbury JB, Scriver CR, Wyngaarden JR, Frederickson DS (eds). The metabolic basis of inherited disease.  New York:; McGraw-Hill, 1989: 99-117
  • 3 Burchell A. Glycogen storage diseases and the liver.  Baillieres Clinical Gastroenterology. 1998;  12 337-354
  • 4 Nordlie R C, Foster J D, Lange A J. Regulation of glucose production by the liver.  Ann Rev Nutr. 1999;  19 379-406
  • 5 Marcolongo P, Banhegyi G, Benedetti A, Hinds C J, Burchell A. Liver microsomal transport of glucose-6-phosphate, glucose, and phosphate in type 1 glycogen storage diseases.  J Clin Endocrinol Metab. 1998;  83 224-229
  • 6 Burchell A, Cain D I. Rat hepatic microsomal glucose-6-phosphatase protein levels are increased in streptozotocin-induced diabetes.  Diabetologia. 1985;  28 852-856
  • 7 Arion W J, Lange A J, Walls H E, Ballas L M. Evidence for the participation of independent translocation for phosphate and glucose-6-phosphate in the microsomal glucose-6-phosphatase system. Interactions of the system with orthophosphate, inorganic pyrophosphate, and carbamyl phosphate.  J Biol Chem. 1980;  255 10 396-10 406
  • 8 Herling A W, Burger H J, Schubert G, Hemmerle H, Schaefer H L, Kramer W. Alterations of carbohydrate and lipid intermediary metabolism during inhibition of glucose-6-phosphatase in rats.  Eur J Pharmacol. 1999;  386 75-82
  • 9 Gill A M, Leiter E H, Powell J G, Chapman H D, Yen T T. Dexamethasone-induced hyperglycemia in obese Avy/a (viable yellow) female mice entails preferential induction of a hepatic estrogen sulfotransferase.  Diabetes. 1994;  43 999-1004
  • 10 Leiter E H, Chapman H D. Obesity-induced diabetes (diabesity) in C57BL/ksj mice produces aberrant transregulation of sex steroid sulfotransferase genes.  J Clin Invest. 1994;  93 2007-2013
  • 11 Leiter E H, Chapman H D, Coleman D L. The influence of genetic background on the expression of mutations at the diabetes locus in the mouse. V. Interaction between the db gene and hepatic sex steroid sulfotransferases correlates with gender-dependent susceptibility to hyperglycemia.  Endocrinology. 1989;  124 912-922
  • 12 Leiter E H, Chapman H D, Falany C N. Synergism of obesity genes with hepatic steroid sulfotransferases to mediate diabetes in mice.  Diabetes. 1991;  40 1360-1363
  • 13 Scott H M, Coughtrie M WH, Burchell A. Steroid sulfates inhibit the rat hepatic microsomal glucose-6-phosphatase system.  Biochem Pharmacol. 1991;  41 1529-1531
  • 14 Coleman D L, Leiter E H, Schwizer R W. Therapeutic effects of dehydroepiandrosterone (DHEA) in diabetic mice.  Diabetes. 1982;  31 830-833
  • 15 Burchell A, Hume R, Burchell B. A new microtechnique for the analysis of the human hepatic microsomal glucose-6-phosphatase system.  Clin Chim Acta. 1988;  173 183-191
  • 16 Blair J N, Burchell A. The mechanism of histone activation of the hepatic microsomal glucose-6-phosphatase system: a novel method to assay glucose-6-phosphatase activity.  Biochim Biophys Acta. 1988;  964 161-167
  • 17 Arion W J, Ballas L M, Lange A J, Wallin B K. Microsomal membrane permeability and the hepatic glucose-6-phosphatase system. Interactions of the system with D-mannose-6-phosphate and D-mannose.  J Biol Chem. 1976;  251 4891-4897
  • 18 Lowry O H, Rosebrough N J, Farr A L, Randall R J. Protein measurement with the Folin phenol reagent.  J Biol Chem. 1951;  193 265-275
  • 19 Peterson G L. A simplification of the protein assay method of Lowry et al. which is more generally applicable.  Anal Biochem. 1977;  83 346-356
  • 20 Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. .  Nature. 1970;  227 680-685
  • 21 Towbin H, Stehilin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications.  Proc Natl Acad Sci USA. 1979;  76 4045-4049
  • 22 Burchell A, Waddell I D, Countaway J L, Arion W J, Hume R. Identification of the human hepatic microsomal glucose-6-phosphatase enzyme.  FEBS Lett. 1988;  242 153-156
  • 23 Countaway J L, Waddell I D, Burchell A, Arion W J. The phosphohydrolase component of the hepatic microsomal glucose-6-phosphatase system is a 36.5 kilodalton polypeptide.  J Biol Chem. 1988;  263 2673-2678
  • 24 Burchell A. The molecular basis of the type 1 glycogen storage diseases.  Bioessays. 1992;  14 395-400
  • 25 Haber B A, Chin S, Chuang E, Buikhuisen W, Naji A, Taub R. High levels of glucose-6-phosphatase gene and protein expression reflect an adaptive response in proliferating liver and diabetes.  J Clin Invest. 1995;  95 832-841
  • 26 Coughtrie M WH, Sharp S, Maxwell K, Innes N P. Biology and function of the reversible sulfation pathway catalysed by human sulfotransferases and sulfatases.  Chem-Biol Interact. 1998;  109 3-27
  • 27 Parenti G, Meroni G, Ballabio A. The sulfatase gene family.  Curr Opin Genet Dev. 1997;  7 386-391
  • 28 Barrett-Connor E, Laakso M. Ischemic heart disease risk in postmenopausal women. Effects of estrogen use on glucose and insulin levels.  Arteriosclerosis. 1990;  10 531-534
  • 29 Manson J E, Rimm E B, Colditz G A, Willett W C, Nathan D M, Arky R A, Rosner B, Hennekens C H, Speizer F E, Stampfer M J. A prospective study of postmenopausal estrogen therapy and subsequent incidence of non-insulin-dependent diabetes mellitus.  Ann Epidemiol. 1992;  2 665-673
  • 30 Troisi R J, Wolf A M, Mason J E, Klingler K M, Colditz G A. Relation of body fat distribution to reproductive factors in pre- and postmenopausal women.  Obes Res. 1995;  3 143-151
  • 31 Walden C E, Knopp R H, Johnson J L, Heiss G, Wahl P W, Hoover J J. Effect of estrogen/progestin potency on clinical chemistry measures. The Lipid Research Clinics Program Prevalence Study.  Am J Epidemiol. 1986;  123 517-531
  • 32 Grasa M M, Vila R, Esteve M, Cabot C, Fernandez-Lopez J A, Remesar X, Alemany M. Oleoyl-estrone lowers the body weight of both ob/ob and db/db mice.  Horm Metab Res. 2000;  32 246-250

Prof. Ann Burchell

Tayside Institute of Child Health
University of Dundee
Ninewells Hospital and Medical School

DUNDEE DD1 9SY
Scotland
UK


Phone: + 44 (1382) 632-445

Fax: + 44 (1382) 632-597

Email: a.burchell@dundee.ac.uk