Neuropediatrics 2001; 32(6): 286-294
DOI: 10.1055/s-2001-20403
Original Article

Georg Thieme Verlag Stuttgart · New York

Neonatal Diffusion-Weighted MR Imaging: Relation with Histopathology or Follow-Up MR Examination

A. M. Roelants-van Rijn1 , P. G. J. Nikkels2 , F. Groenendaal1 , J. van der Grond3 , P. G. Barth4 , I. Snoeck4 , F. J. A. Beek3 , L. S. de Vries1
  • 1 Department of Neonatology, University Medical Center, Utrecht, The Netherlands
  • 2 Department of Pathology, University Medical Center, Utrecht, The Netherlands
  • 3 Department of Radiology, University Medical Center, Utrecht, The Netherlands
  • 4 Department of Pediatric Neurology, Academic Medical Center, Amsterdam, The Netherlands
Further Information

Publication History

Publication Date:
27 February 2002 (online)

Abstract

Purpose: Diffusion-weighted imaging (DWI) has become a standard method for early evaluation of stroke in adults, but its value in neonates is less well established. In this study neonatal DWI was compared with histopathology in those patients who died, or with sequelae seen on a second MR in the surviving neonates. Patients and Methods: DWI was performed in 2 groups. Group 1: seven neonates who died and had a post-mortem examination (perinatal asphyxia [n = 5], symptomatic hypoglycemia [n = 1], periventricular leukomalacia [n = 1]). Group 2: six surviving neonates with a second MR examination at three months of age (perinatal asphyxia [n = 2], neonatal stroke [n = 3], meningo-encephalitis [n = 1]). Results: In group 1 neonatal DWI showed more extensive involvement than conventional MRI in 6 out of 7 patients. These changes were less extensive, however, than seen post-mortem by histopathology in 5 out of 7. In group 2 neonatal DWI showed more extensive involvement than conventional MRI in 2 out of 6; 4 out of 6, however, showed less extensive cystic evolution on follow-up MRI at 3 months than expected from neonatal imaging. Conclusion: There was a good relation between hyperintense areas on DWI and areas of cytotoxic edema and neuronal damage on histopathology. In the survivors a second MRI showed cystic evolution in all, but the volume of the cysts was smaller than expected on the basis of the neonatal DWI findings.

Newborn · Perinatal asphyxia · MRI · Diffusion-weighted imaging (DWI) · Periventricular leukomalacia (PVL)

References

  • 1 Barkovich A J. MR and CT evaluation of profound neonatal and infantile asphyxia.  AJNR. 1992;  13 959-972
  • 2 Beaulieu C, De Crespigny A, Tong D, Moseley M, Albers G, Marks M. Longitudinal magnetic resonance imaging study of perfusion and diffusion in stroke: evolution of lesion volume and correlation with clinical outcome.  Arch Neurol. 1999;  46 568-578
  • 3 Berger R, Garnier Y. Pathophysiology of perinatal brain injury.  Brain Res Rev. 1999;  30 107-134
  • 4 Bydder G, Rutherford M A, Hajnal J. How to perform diffusion-weighted imaging.  Child's Nerv Syst. 2001;  17 195-201
  • 5 Conturo T, McKinstry R, Aronovitz J, Neil J. Diffusion MRI: precision, accuracy and flow effects.  NMR Biomed. 1995;  8 307-332
  • 6 Cowan F, Pennock J, Hanrahan J, Manji K, Edwards A. Early detection of cerebral infarction and hypoxic ischemic encephalopathy in neonates using diffusion-weighted magnetic resonance imaging.  Neuropediatrics. 1994;  25 172-175
  • 7 D'Arceuil H, Rhine W, De Crespigny A, Yenari M, Tait J, Strauss W, Engelhorn T, Kastrup A, Moseley M, Blankenberg F. 99 mTc Annexin V imaging of neonatal hypoxic brain injury.  Stroke. 2000;  32 2692-2700
  • 8 Davis D, Ulatowski J, Eleff S, Izuta M, Mori S, Shungu D, Van Zijl P. Rapid monitoring of changes in water diffusion coefficients during reversible ischemia in cat and rat brain.  Magn Reson Med. 1994;  31 454-460
  • 9 Forbes K, Pipe J, Bird R. Neonatal hypoxic-ischemic encephalopathy: detection with diffusion-weighted MR imaging.  AJNR Am J Neuroradiol. 2000;  21 1490-1496
  • 10 Gill R, Sibson N, Hatfield R, Burdett N, Carpenter T, Hall L, Pickard J. A comparison of the early development of ischaemic damage following permanent middle cerebral artery occlusion in rats as assessed using magnetic resonance imaging and histology.  J Cereb Blood Flow Metab. 1995;  15 1-11
  • 11 Groenendaal F, De Vries L. Selection of babies for intervention after birth asphyxia.  Semin Neonatol. 2000;  5 17-32
  • 12 Hasegawa Y, Formato J, Latour L, Gutierrez J, Liu K, Garcia J, Sotak C, Fisher M. Severe transient hypoglycemia causes reversible change in the apparent diffusion coefficient of water.  Stroke. 1996;  27 1648-1656
  • 13 Hoehn-Berlage M, Norris D, Kohno K, Mies G, Leibfritz D, Hossmann K. Evolution of regional changes in apparent diffusion coefficient during focal ischemia of rat brain: The relationship of quantitative diffusion NMR imaging to reduction in cerebral blood flow and metabolic disturbances.  J Cereb Blood Flow Metab. 1995;  15 1002-1011
  • 14 Huppi P, Maier S, Peled S, Zientara G, Barnes P, Jolesz F, Volpe J. Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging.  Pediatr Res. 1998;  44 584-590
  • 15 Inder T, Huppi P, Zientara G, Maier S, Jolesz F, Di Salvo D, Robertson R, Barnes P, Volpe J. Early detection of periventricular leukomalacia by diffusion-weighted magnetic resonance imaging techniques.  J Pediatr. 1999;  134 631-634
  • 16 Krishnamoorthy K, Soman T, Takeoka M, Schaefer P. Diffusion-weighted imaging in neonatal cerebral infarction: clinical utility and follow-up.  J Child Neurol. 2000;  15 592-602
  • 17 Mintorovitch J, Moseley M, Chileuitt L, Shimizu H, Cohen Y, Weinstein P. Comparison of diffusion- and T2-weighted MRI for the early detection of cerebral ischemia and reperfusion in rats.  Magn Reson Med. 1991;  18 39-50
  • 18 Mito T, Kamei A, Takashima S, Becker L. Clinicopathological study of pontosubicular necrosis.  Neuropediatrics. 1993;  24 204-207
  • 19 Miyasaka N, Kuroiwa T, Zhao F, Nagaoka T, Akimoto H, Yamada I, Kubota T, Aso T. Cerebral ischemic hypoxia: discrepancy between apparent diffusion coefficients and histologic changes in rats.  Radiology. 2000;  215 199-204
  • 20 Nedelcu J, Klein M, Aguzzi A, Boesiger P, Martin E. Biphasic edema after hypoxic-ischemic brain injury in neonatal rats reflects early neuronal and late glial damage.  Pediatr Res. 1999;  46 297-304
  • 21 Neil J, Shiran S, McKinstry R, Schefft G, Snyder A, Almli C, Akbudak E, Aronovitz J, Miller J, Lee B, Conturo T. Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging.  Radiology. 1998;  209 57-66
  • 22 Neumann-Haefelin T, Kastrup A, De Crespigny A, Yenari M, Ringer T, Sun G, Moseley M. Serial MRI after transient focal cerebral ischemia in rats. Dynamics of tissue injury, blood-brain barrier damage, and edema formation.  Stroke. 2000;  31 1965-1973
  • 23 Rutherford M A, Pennock J M, Counsell S J, Mercuri E, Cowan F M, Dubowitz L MS, Edwards A D. Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic-ischemic encephalopathy.  Pediatrics. 1998;  102 323-328
  • 24 Rutherford M A, Pennock J M, Schwieso J, Cowan F M, Dubowitz L. Hypoxic ischaemic encephalopathy: early magnetic resonance imaging findings and their evolution.  Neuropediatrics. 1995;  26 183-191
  • 25 Saukkonen K, Sande S, Cioffe C, Wolpe S, Sherry B, Cerami A, Tuomanen E. The role of cytokines in the generation of inflammation and tissue damage in experimental gram-positive meningitis.  J Exp Med. 1990;  171 439-448
  • 26 Sevick R, Kanda F, Mintorovitch J, Arieff A, Kucharczyk J, Tsuruda J, Norman D, Moseley M. Cytotoxic brain edema: assessment with diffusion-weighted MR imaging.  Radiology. 1992;  185 687-690
  • 27 Toft P, Leth H, Peitersen B, Lou H, Thomsen C. The apparent diffusion coefficient of water in gray and white matter of the infant brain.  J Comput Assist Tomogr. 1996;  20 1006-1011
  • 28 Van der Toorn A, Sykova E, Dijkhuizen R, Vorisek I, Vargova L, Skobisova E, Van Lookeren Campagne M, Reese T, Nicolay K. Dynamic changes in water ADC, energy metabolism, extracellular space volume, and tortuosity in neonatal rat brain during global ischemia.  Magn Reson Med. 1996;  36 52-60
  • 29 Vannuci R, Perlman J. Interventions for perinatal hypoxic-ischemic encephalopathy.  Pediatrics. 1997;  100 1004-1014
  • 30 Voit T, Lemburg P, Neuen E, Lumenta C, Stork W. Damage of thalamus and basal ganglia in asphyxiated full-term neonates.  Neuropediatrics. 1987;  18 176-181
  • 31 Volpe J J. Brain injury in the premature infant.  Clin Perinatol. 1997;  24 567-587
  • 32 Weber J, Mattle H, Heid O, Remonda L, Schroth G. Diffusion-weighted imaging in ischaemic stroke: a follow-up study.  Neuroradiology. 2000;  42 184-191
  • 33 Yoneda Y, Tokui K, Hanihara T, Kitagaki H, Tabuchi M, Mori E. Diffusion-weighted magnetic resonance imaging: detection of ischemic injury 39 minutes after onset in a stroke patient.  Ann Neurol. 1999;  45 794-797

Prof. Dr. M.D., Ph.D. Linda S. de Vries

Department of Neonatology, KE 04.123.1, Wilhelmina Children's Hospital/University Medical Center Utrecht

PO Box 85090

3508 AB Utrecht

The Netherlands

Email: L.deVries@wkz.azu.nl