Z Gastroenterol 2001; 39: 24-27
DOI: 10.1055/s-2001-919056
Supplement

© Karl Demeter Verlag im Georg Thieme Verlag Stuttgart · New York

Albumin Binding Capacity (ABiC) is reduced in commercially available Human Serum Albumin preparations with stabilizers

S. Klammt2 , B. Brinkmann2 , S. Mitzner2 , E. Munzert1 , J. Loock2 , J. Stange2 , J. Emmrich2 , S. Liebe1
  • 1Dept. of Internal Medicine, University of Rostock, Germany
  • 2TERAKLIN AG, Rostock, Germany
Further Information

Publication History

Publication Date:
07 October 2005 (online)

Introduction

Albumin is clinically used as a liver function test describing the metabolic liver capacity and so as a marker of severity of illness in multiple scoring systems. Reduction of serum albumin concentration is correlated with an increased mortality in different diseases, therefore albumin concentration is seen and used as an independent predictor of severity of illness in different clinical scoring systems [1] [2] [3]. However, estimation of albumin concentration does not provide information about the existing functional status or capacity to transport endogenous substances (e. g. prostaglandin, bilirubin, bile acids, fatty acids, thyroid hormones, endogenous steroids and benzodiazepines) or drugs (e. g. diuretics, ß-Lactam-antibiotics, sedatives). Most of the albumin ligands are bound to one of the two common binding sites I or II, as described by Sudlow and colleagues [4; 5]. Free fatty acids, metal ions like Copper and bilirubin are bound selectively to specific binding domains [6] [7] [8] [9] [10] [11].

Especially in acute liver failure or in end stage liver disease (ESLD) the impaired excretory capacity for lipophilic substances leads to an accumulation of these mostly albumin bound or transported compounds. According to the reduced albumin concentration and the limited transport capacity substances with a less affinity will be competitive displaced by ligands with a higher binding affinity to albumin. Metabolic pathways can be affected by the so increased unbound fraction of various substances which can results in worsening of hepatic failure or impaired pharmacokinetic or toxic effects of drugs. Impaired binding properties in diseases with an accumulation of albumin bound substances are described for single substances bound to one of the two major binding sites I or II.

For bilirubin, bound selectively to a specific bilirubin binding site, a equilibrium dialysis based test system has been developed to evaluate the remaining transport capacity of albumin in hyperbilirubinaemia [12] [13] [14].

Hypoalbuminaemia can be corrected by intravenous infusion of albumin containing products like Fresh Frozen Plasma (FFP), serum preparation or normal serum albumin. In the commercially available 5 %, 20 % or 25 % albumin solutions either caprylate (octanoate) or N-acetyl-tryptophanate (N-AT) are added to a molar ratio of 5:1 per mol albumin. This is necessary to avoid polymerization during pasteurization (60 °C for 10h). However, the used stabilizers are bound to albumin binding site II and therefor the transport function of pasteurized albumin is impaired and after intravenous infusion endogenous albumin ligands may be displaced [15] [16] [17].

Considering the need of a simply estimation of existing albumin transport function especially in liver disease a new laboratory test has been developed which enables the binding site specific characterization of the Albumin Binding Capacity (ABiC). Measuring either the bound (direct test) or the unbound (indirect test) fraction of a site specific marker and comparison with a reference the available transport capacity can be expressed quantitatively.

Based on the hypothesis, that an accumulation of albumin bound substances in excretory liver failure as well as the stabilizers present in commercially available albumin preparations may reduce the available binding and therefor transport capacity of albumin, ABiC was measured in different albumin preparations with or without stabilizers, in healthy volunteers and in patients with severe liver failure.

References

  • 1 Pugh R N, Murray-Lyon I M, Dawson J L, Pietroni M C, Williams R. Transection of the oesophagus for bleeding oesophageal varices.  Br J Surg. 1973;  60 646-649
  • 2 Cooper G S, Bellamy P, Dawson N V, Desbiens N. A prognostic model for patients with end-stage liver disease.  Gastroenterology. 1997;  113 1278-1288
  • 3 Knaus W A, Draper E A, Wagner D P, Zimmerman J E. APACHE II: a severity of disease classification system.  Crit Care Med. 1985;  13 818-829
  • 4 Sudlow G, Birkett D J, Wade D N. Further characterization of specific drug binding sites on human serum albumin.  Mol Pharmacol. 1976;  12 1052-1061
  • 5 Sudlow G, Birkett D J, Wade D N. The characterization of two specific drug binding sites on human serum albumin.  Mol Pharmacol. 1975;  11 824-832
  • 6 Carter D C, Ho J X. Structure of serum albumin.  Adv Protein Chem. 1994;  45 153-203
  • 7 Fehske K J, Müller W E, Wollert U. Commentary The Location Of Drug Binding Sites In Human Serum Albumin.  Biochem Pharmacol. 1981;  30 687-692
  • 8 Kragh-Hansen U. Structure and ligand binding properties of human serum albumin.  Dan Med Bull. 1990;  37 57-84
  • 9 Peters T. All about albumin. San Diego, Ca; Academic Press Inc 1996
  • 10 Peters Jr T. Serum albumin.  Adv Protein Chem. 1985;  37 161-245
  • 11 Brodersen R. Binding of Bilirubin and other ligands to human serum albumin. Peters T and Sjöholm I Albumin: Structure, Biosynthesis and Function Pergamon Press 1977: 61-70.
  • 12 Banagale R C, Bernstein L H. Reserve bilirubin binding capacity measured by absorbance deviation at saturation of primary albumin binding sites.  Res Commun Chem Pathol Pharmacol. 1982;  38 463-479
  • 13 Burckart G J, Whitington P F, Gross S R. Reserve bilirubin binding capacity determined by difference spectroscopy. i. modifications and performance of the difference spectroscopy assay.  J Pediatr Gastroenterol Nutr. 1982;  1 489-493
  • 14 Whitington P F, Burckart G J, Gross S R, Korones S B, Helms R A. Alterations in reserve bilirubin binding capacity of albumin by free fatty acids. ii. in vitro and in vivo studies using difference spectroscopy.  J Pediatr Gastroenterol Nutr. 1982;  1 495-501
  • 15 Kragh-Hansen U. Octanoate binding to the indole - and benzodiazepine binding region of human serum albumin.  Biochem J. 1991;  273 641-644 (S 02)
  • 16 Brodersen R, Hansen P. Bilirubin displacing effect of stabilizers added to injectable preparations of human serum albumin.  Acta Paediatr Scand. 1977;  66 133-135
  • 17 Ebbesen F, Brodersen R. Comparison between two preparations of human serum albumin in treatment of neonatal hyperbilirubinaemia.  Acta Paediatr Scand. 1982;  71 85-90

Sebastian Klammt

Rostock

Email: sebastian.klammt@medizin.uni-rostock.de