Zusammenfassung
Studienziel: In-vitro-Techniken für
artikuläre Chondrozyten dienen nicht nur dem Studium pathophysiologischer
Vorgänge sowie der Einflüsse von Mediatoren und Medikamenten zur
Arthrose- bzw. Arthritisbehandlung, sondern auch der Herstellung von
Knorpelersatzgewebe zur Defektauffüllung in vivo. Diese Arbeit soll
einerseits einen Überblick über die Grundlagen verschiedener
Techniken zur Kultivierung von Gelenkknorpelzellen geben, andererseits die
spezifischen Anforderungen (phänotypische Stabilität mit Synthese von
Aggrekan und Typ-II-Kollagen, fehlender direkter Zell-Zell-Kontakt, geringe
Proliferationsneigung, geringer Umsatz der Matrixmoleküle) an solche
Systeme aufzeigen. Methode: Anhand einer
„Medline”-gestützten Recherche wurden die gegenwärtig
verwendeten Techniken der Knorpelzellkultur und deren Entwicklung
identifiziert. Die Bewertung erfolgte aufgrund eigener Erfahrungen und der in
der Literatur angegebenen Daten. Ergebnisse: Es lassen
sich zwei- und dreidimensionale Techniken zur Kultivierung von
Gelenkknorpelzellen unterscheiden. Zweidimensionale (Monolayer-)Kulturen
fördern insbesondere die Proliferation der Knorpelzellen, führen aber
gleichzeitig innerhalb von Tagen zu einem Verlust des spezifischen
Phänotyps artikulärer Chondrozyten. Dreidimensionale Anordnungen
(z. B. Organ-, Alginat-, Agarosekulturen) gewährleisten nicht nur
den Erhalt des Phänotyps über Monate, sondern erlauben (in Monolayer)
dedifferenzierten artikulären Chondrozyten nach dem Transfer in eine
dreidimensionale Umgebung die Wiederherstellung des ursprünglichen
Phänotyps. Schlussfolgerung: Die Wahl der
jeweiligen Methodik zur Kultivierung artikulärer Chondrozyten sollte an
die zu beantwortende Fragestellung angepasst werden.
Abstract
Aim: In-vitro techniques for articular
chondrocytes allow the analysis of their metabolism in the presence and absence
of mediators or drugs against osteoarthritis or rheumatoid arthritis, as well
as the synthesis of de-novo cartilage tissue for implantation into articular
defects in vivo. This review aims to give an overview about the basics of
different methods of cultivation of articular chondrocytes and about several
specific demands (e.g., phenotypical stability with synthesis of aggrecan and
type-II collagen, no cell-to-cell contact, low proliferation rates, low matrix
molecule turn-over) to such methods. Method: Current
techniques for the cultivation of articular chondrocytes and their development
were identified via “medline”. Their evaluation was based on our
own experience and on data from the literature. Results:
Two- and three-dimensional culture systems are employed to maintain articular
chondrocytes in vitro. Two-dimensional cultures (monolayer) support the
proliferation of articular chondrocytes, but lead to a de-differentiation to
fibroblast-like cells. Three-dimensional set-ups (e.g., organ, alginate,
agarose cultures) not only maintain the articular cartilage phenotype, but they
also support the re-differentiation of de-differentiated chondrocytes.
Conclusion: The choice of a culture system for in-vitro
studies with articular chondrocytes should be adapted to the question
asked.
Schlüsselwörter
Artikuläre Chondrozyten - Gelenkknorpel - in vitro - Kultur - Phänotyp
Key words
Articular chondrocytes - articular cartilage - in-vitro - tissue culture - phenotype
Literatur
-
1
Adolphe M, Benoit B.
Culture de chondrocytes articulaires humains. Interet en
pharmacotoxicologie.
Ann Pharm Fr.
1994;
52
177-183
-
2 Adolphe M, Benya P. Different types of cultured chondrocytes - the in vitro
approach to the study of biological regulation. In: M. Adolphe (Hrsg) Biological regulation of the chondrocytes. Ann Arbor, Michigan; CRC Press 1992: 105-139
-
3
Adolphe M, Thenet S.
Le concept d’immortalite cellulaire, un mythe ou une
realiter Exemple de chondrocytes articulaires
„immortalises”.
Bull Acad Natl Med.
1990;
174
139-144 (discussion 144 - 146)
-
4
Aigner J, Tegeler J, Hutzler P, Campoccia D, Pavesio A, Hammer C, Kastenbauer E, Naumann A.
Cartilage tissue engineering with novel nonwoven structured
biomaterial based on hyaluronic acid benzyl ester.
J Biomed Mater Res.
1998;
42
172-181
-
5
Archer C W, McDowell J, Bayliss M, Stephens M, Bentley G.
Phenotypic modulation in sub-populations of human articular
chondrocytes in vitro.
J Cell Sci.
1990;
97
361-371
-
6
Aulthouse A L, Beck M, Griffey E, Sanford J, Arden K, Machado M A, Horton W A.
Expression of the chondrocyte phenotype in vitro.
In Vitro Cell Dev Biol.
1989;
25
659-668
-
7
Aydelotte M B, Greenhill R R, Kuettner K E.
Differences between subpopulations of cultured bovine
articular chondrocytes. II. Proteoglycan metabolism.
Connect Tissue Res.
1988;
18
223-234
-
8
Aydelotte M B, Kuettner K E.
Differences between subpopulations of cultured bovine
articular chondrocytes. I. Morphology and cartilage matrix production.
Connect Tissue Res.
1988;
18
205-222
-
9 Aydelotte M B, Schumacher B L, Kuettner K E. Heterogeneity of articular chondrocytes. In: K. E. Kuettner, R. Schleyerbach, J. G. Peyron, V. C.
Hascall (Hrsg) Articular cartilage and osteoarthritis. New York; Raven Press 1992: 237-249
-
10
Aydelotte M S, Thonar E J-MA, Mollenhauer J, Flechtenmacher J.
Culture of chondrocytes in alginate gel: Variations in
conditions of gelation influence the structure of the alginate gel, and the
arrangement and morphology of proliferating chondrocytes.
In vitro Cell Dev Biol.
1998;
34
123-130
-
11
Baker T L, Goodwin T J.
Three-dimensional culture of bovine chondrocytes in
rotating-wall vessels.
In vitro Cell Dev Biol Anaimal.
1997;
33
358-365
-
12
Bassleer C, Gysen P, Foidart J M, Bassleer R, Frenchimont P.
Human chondrocytes in tridimensional culture.
In Vitro Cell Dev Biol.
1986;
22
113-119
-
13
Bayliss M T, Venn M, Maroudas A, Ali S Y.
Structure of proteoglycan from different layers of human
articular cartilage.
Biochem J.
1983;
209
387-400
-
14
Benya P D, Nimni M E.
The stability of the collagen phenotype during stimulated
collagen, glycosaminoglycan, and DNA synthesis by articular cartilage organ
cultures.
Arch Biochem Biophys.
1979;
192
327-335
-
15
Benya P D, Padilla S R, Nimni M E.
Independent regulation of collagen types of chondrocytes
during the loss of differentiated function in culture.
Cell.
1978;
15
313-1321
-
16
Benya P D, Shaffer J D.
Dedifferentiated chondrocytes reexpress the differentiated
collagen phenotype when cultured in agarose gels.
Cell.
1982;
30
215-224
-
17
Binette F, McQuaid D P, Haudenschild D R, Yaeger P C, McPherson J M, Tubo R.
Expression of a stable articular cartilage phenotype without
evidence of hypertrophy by adult human articular chondrocytes in vitro.
J Orthop Res.
1998;
16
207-216
-
18
Bonaventure J, Kadhom N, Cohen-Solal L, Ng K H, Bourguignon J, Lasselin C, Freisinger P.
Reexpression of cartilage-specific genes by dedifferentiated
human articular chondrocytes cultured in alginate beads.
Exp Cell Res.
1994;
212
97-104
-
19
Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L.
Treatment of deep cartilage defects in the knee with
autologous chondrocyte Transplantation.
N Engl J Med.
1994;
331
889-895
-
20
Cao Y, Rodriguez A, Vacanti M, Ibarra C, Arevalo C, Vacanti C A.
Comparative study of the use of poly(glycolic acid), calcium
alginate and pluronics in the engineering of autologous porcine cartilage.
J Biomater Sci Polym Ed.
1998;
9
475-487
-
21
Carrel A.
The preservation of tissues and its applications in surgery.
(JAMA 1912; 59 : 523ff).
„The Classic” Clin Orthop.
1992;
278
2-8
-
22
Chandrasekhar S, Esterman M A, Hoffman H A.
Microdetermination of proteoglycans and glycosaminoglycans in
the presence of guanidine hydrochloride.
Anal Biochem.
1987;
161
103-108
-
23
Chang J, Poole C A.
Confocal analysis of the molecular heterogeneity in the
pericellular microenvironment produced by adult canine chondrocytes cultured in
agarose gel.
Histochem J.
1997;
29
515-528
-
24
Chubinskaya S, Huch K, Mikecz K, Cs-Szabo G, Hasty K A, Kuettner K E, Cole A A.
Chondrocyte MMP-8: Upregulation of neutrophil collagenase by
interleukin-1β in human cartilage from knee and ankle joints.
Lab Invest.
1996;
74
232-240
-
25
Cima L G, Vacanti J P, Vacanti C, Ingber D, Mooney D, Langer R.
Tissue engineering by cell transplantation using degradable
polymer substrates.
J Biomech Eng.
1991;
113
143-151
-
26
D’Andrea P, Calabrese A, Grandolfo M.
Intercellular calcium signaling between chondrocytes and
synovial cells in co-culture.
Biochem J.
1998;
329
681-687
-
27
Delbrück A, Dresow B, Gurr E, Reale E, Schröder H.
In-vitro culture of human chondrocytes from adult
subjects.
Connect Tissue Res.
1986;
15
155-172
-
28
Deshmukh K, Kline W G.
Characterization of collagen and its precursors synthesized
by rabbit-articular-cartilage cells in various culture systems.
Eur J Biochem.
1976;
69
117-123
-
29
Dessau W, Vertel B M, von der Mark H, von der Mark K.
Extracellular matrix formation by chondrocytes in
monolayer.
J Cell Biol.
1981;
90
78-83
-
30
Fell H B, Jubb R W.
The effect of synovial tissue on the breakdown of articular
cartilage in organ culture.
Arthritis Rheum.
1977;
20
1359-1371
-
31
Fell H B, Robison R.
The growth, development and phosphatase activity of embryonic
avian femora and limb-buds cultivated in vitro.
Biochem J.
1929;
23
767-784
-
32
Fischer A.
A pure strain of cartilage cells in vitro.
J Exp Med.
1922;
35
379-384
-
33
Flechtenmacher J, Huch K, Thonar E J-MA, Mollenhauer J, Davies S R, Schmid T M, Puhl W, Sampath T K, Aydelotte M B, Kuettner K E.
Recombinant human osteogenic protein 1 is a potent stimulator
of the synthesis of cartilage proteoglycans and collagens by human articular
chondrocytes.
Arthritis Rheum.
1996;
39
1896-1904
-
34
Flint O P.
A micromass culture method for rat embryonic neural
cells.
J Cell Sci.
1983;
61
247-262
-
35
Freed L E, Martin I, Vunjak-Novakovic G.
Frontiers in tissue engineering. In vitro modulation of
chondrogenesis.
Clin Orthop.
1999;
367 Suppl
46-58
-
36
Galéra P, Rédini F, Vivien D, Bonaventure J, Penfornis H, Loyau G, Pujol J-P.
Effect of transforming growth factor-β1 (TGF-β1) on
matrix synthesis by monolayer cultures of rabbit articular chondrocytes during
the differentiation process.
Exp Cell Res.
1992;
200
379-392
-
37
Gionti E, Pontarelli G, Cancedda R.
Avian myelocytomatosis virus immortalizes differentiated
quail chondrocytes.
Proc Natl Acad Sci USA.
1985;
82
2756-2760
-
38
Goldring M B, Birkhead J R, Suen L-F, Yamin R, Mizuno S, Glowacki J, Arbiser J L.
lnterleukin-1β-modulated gene expression in immortalized
human chondrocytes.
J Clin Invest.
1994;
94
2307-2316
-
39
Grande D A, Halberstadt C, Noughton G, Schwartz R, Manji R.
Evaluation of matrix scaffolds for tissue engineering of
articular cartilage grafts.
J Biomed Mater Res.
1997;
34
211-220
-
40
Gray M L, Pizzanelli A M, Grodzinsky A J, Lee R C.
Mechanical and physicochemical determinants of the
chondrocyte biosynthetic response.
J Orthop Res.
1988;
6
777-792
-
41
Green W T.
Behavior of articular chondrocytes in cell culture.
Clin Orthop.
1971;
75
248-260
-
42
Gugala Z, Gogolewski S.
In vitro growth and activity of primary chondrocytes on a
resorbable polylactide three-dimensional scaffold.
J Biomed Mater Res.
2000;
49
183-191
-
43
Guo J F, Jourdian G W, MacCallum D K.
Culture and growth characteristics of chondrocytes
encapsulated in alginate beads.
Connect Tissue Res.
1989;
19
277-297
-
44
Hamerman D, Janis R, Smith C.
Cartilage matrix depletion by rheumatoid synovial cells in
tissue culture.
J Exp Med.
1967;
126
1005-1012
-
45
Haudenschild D R, McPherson J M, Tubo R, Binette F.
Differential expression of multipie genes during articular
chondrocyte redifferentiation.
Anat Rec.
2001;
263
91-98
-
46
Häuselmann H J, Aydelotte M B, Schumacher B L, Kuettner K E, Gitelis S H, Thonar E J-MA.
Synthesis and turnover of proteoglycans by human and bovine
adult articular chondrocytes cultured in alginate beads.
Matrix.
1992;
12
116-129
-
47
Häuselmann H J, Fernandes R J, Mok S S, Schmid T M, Block J A, Aydelotte M B, Kuettner K E, Thonar E J-MA.
Phenotypic stability of bovine articular chondrocytes after
long-term culture in alginate beads.
J Cell Sci.
1994;
107
17-27
-
48
Häuselmann H J, Masuda K, Hunziker E B, Neidhart M, Mok S S, Michel B A, Thonar E J.
Adult human chondrocytes cultured in alginate form a matrix
similar to native human articular cartilage.
Am J Physiol.
1996;
271
C742-752
-
49
Holtzer H, Abbott J, Lash J, Holtzer S.
The loss of phenotypic traits by differentiated cells in
vitro. I. Dedifferentiation of cartilage cells.
Proc Nat Acad Sci.
1960;
46
1533-1542
-
50
Horwitz A L, Dorfman A.
The growth of cartilage cells in soft agar and liquid
suspension.
J Cell Biol.
1970;
45
434-438
-
51
Huch K, Stöve J, Günther K P, Puhl, W.
lnteractions between human osteoarthritic chondrocytes and
synovial fibroblasts in co-culture.
Clin Exp Rheumatol.
2001;
19
27-33
-
52
Huch K, Wilbrink B, Flechtenmacher J, Koepp H E, Aydelotte M S, Sampath T K, Kuettner K E, Mollenhauer J, Thonar E.
Effects of recombinant human osteogenic protein 1 on the
production of proteoglycan, prostaglandin E2, and interleukin-1 receptor
antagonist by human articular chondrocytes cultured in the presence of
interleukin-1β.
Arthritis Rheum.
1997;
40
2157-2161
-
53
Jacoby R K.
Effect of homologous synovial membrane on adult human
articular cartilage in organ culture and failure to influence it with
D-penicillamine.
Ann Rheum Dis.
1980;
39
53-58
-
54
Kawiak J, Moskalewski S, Darzynkiewicz Z.
Isolation of chondrocytes from calf cartilage.
Exp Cell Res.
1965;
39
59-68
-
55
Keiser H D, Malemud C J.
A comparison of the proteoglycans produced by rabbit
articular chondrocytes in monolayer and spinner culture and those of bovine
nasal cartilage.
Conn Tiss Res.
1983;
11
273-284
-
56
Kennedy R D, Plater-Zyberk C, Partridge T A, Woodrow D F, Muir R H.
Morphometric comparison of synovium from patients with
osteoarthritis and rheumatoid arthritis.
J Clin Pathol.
1988;
41
847-852
-
57
Kuettner K E, Memoli V A, Pauli B U, Wrobel N C, Thonar E J-MA, Daniel J C.
Synthesis of cartilage matrix by mammalian chondrocytes in
vitro. II. Maintenance of collagen and proteoglycan phenotype.
J Cell Biol.
1982;
93
751-757
-
58
Kuettner K E, Pauli B U, Gall G, Memoli V A, Schenk R K.
Synthesis of cartilage matrix by mammalian chondrocytes in
vitro. I. Isolation, culture characteristics, and morphology.
J Cell Biol.
1982;
93
743-750
-
59
Kupchik H Z, Langer R S, Haberern C, EI-Deriny S, O’Brien M.
A new method for the three-dimensional in vitro growth of
human cancer cells.
Exp Cell Res.
1983;
147
454-460
-
60
Kuroda Y.
Studies on cartilage cells in vitro. II. Changes in
aggregation and in cartilage-forming activity of cells maintained in
monolayer-cultures.
Exp Cell Res.
1964;
35
337-348
-
61
Kurz B, Steinhagen J, Schünke M.
Articular chondrocytes and synovialcytes in a co-culture
system: influence on reactive oxygen species-induced cytotoxicity and lipid
peroxidation.
Cell Tissue Res.
1999;
296
555- 563
-
62
Lemare F, Steimberg N, Le Griel C, Demignot S, Adolphe M.
Dedifferentiated chondrocytes cultured in alginate beads:
restoration of the dedifferentiated phenotype and of the metabolic responses to
interleukin-1β.
J Cell Physiol.
1998;
176
303-313
-
63
Liu H, Lee Y-W, Dean M F.
Re-expression of differentiated proteoglycan phenotype ba
dedifferentiated human chondrocytes during culture in alginate beads.
Biochim Biophys Acta.
1998;
1425
505-515
-
64
Luyten F P, Chen P, Paralkar V, Reddi A H.
Recombinant bone morphogenetic protein-4, transforming growth
factor-β1, and activin A enhance the cartilage phenotype of
articular chondrocytes in vitro.
Exp Cell Res.
1994;
210
224-229
-
65
Malemud C J, Norby D P, Soskoloff L.
Explant culture of human and rabbit articular
chondrocytes.
Connect Tissue Res.
1978;
6
171-179
-
66
Manning W K, Bonner W M.
Isolation and culture of chondrocytes from human adult
articular cartilage.
Arthritis Rheum.
1967;
10
235-239
-
67
Maroudas A, Bayliss M T, Uchitel-Kaushansky N, Schneiderman R, Gilav E.
Aggrecan turnover in human articular cartilage: use of
aspartic acid racemization as a marker of molecular age.
Arch Biochem Biophys.
1998;
350
61-71
-
68
Maroudas A, Palla G, Gilav E.
Racemization of aspartic acid in human articular
cartilage.
Connect Tissue Res.
1992;
28
161-169
-
69
Maroudas A.
Glycosaminoglycan turn-over in articular cartilage.
Philos Trans R Soc Lond B Biol Sci.
1975;
271 (912)
293-313
-
70
Melching L I, Roughley P J.
Modulation of keratan sulfate synthesis on lumican by the
action of cytokines on human articular chondrocytes.
Matrix Biol.
1999;
18
381-390
-
71
Mok S S, Masuda K, Häuselmann H J, Aydelotte M B, Thonar E J.
Aggrecan synthesized by mature bovine chondrocytes suspended
in alginate. Identification of two distinct metabolic matrix pools.
J Biol Chem.
1994;
269
33 021-33 027
-
72
Moscona A.
The development in vitro of chimeric aggregates of
dissociated embryonic chick and mouse cells.
Proc Nat Acad Sci.
1957;
43
184-194
-
73
Moscona H, Moscona A.
The dissociation and aggregation of cells from organ
rudiments of the early chick embryo.
J Anat.
1952;
86
287-301
-
74
Nevo Z, Silver J, Chorev Y, Riklis I, Robinson D, Yosipovitch Z.
Adhesion characteristics of chondrocytes cultured separately
and in co-cultures with synovial fibroblasts.
Cell Biol Intern.
1993;
17
255-273
-
75
Norby D P, Malemud C J, Sokoloff L.
Differences in the collagen types synthesized by lapine
articular chondrocytes in spinner and monolayer culture.
Arthritis Rheum.
1977;
20
709-716
-
76
Panagides J, Landes M J, Sloboda A E.
Destruction of articular cartilage by arthritic synovium in
vitro: mechanism of breakdown and effect of indomethacin and prednisolone.
Agents Actions.
1980;
10
22-30
-
77
Pazzano D, Mercier K A, Moran J M, Fong S S, DiBiasio D O, Rulfs J X, Kohles S S, Bonassar L J.
Comparison of chondrogenesis in static and perfused
bioreactor culture.
Biotechnol Prog.
2000;
16
893-896
-
78
Petit B, Masuda K, Dscuza A L, Otten L, Pietryla D, Hartmann D J, Morris N P, Übelhart D, Schmid T M, Thonar E J.
Characterization of crosslinked collagens synthesized by
mature articular chondrocytes cultured in alginate beads: comparison of two
distinct compartments.
Exp Cell Res.
1996;
225
151-161
-
79
Prudden T M.
Experimental studies on the Transplantation of
cartilage.
Am J Med Sci.
1881;
164
360-370
-
80
Pamachandrula A, Tiku K, Tiku M L.
Tripeptide RGD-dependent adhesion of articular chondrocytes
to synovial fibroblasts.
J Cell Sci.
1992;
101
859-871
-
81
Reddi A H.
Role of morphogenetic proteins in skeletal tissue engineering
and regeneration.
Nat Biotechnol.
1998;
16
247-252
-
82
Revell P A, Mayston V, Lalor P, Mapp P.
The synovial membran in osteoarthritis: a histological study
including the characterization of the cellular infiltrate present in
inflammatory osteoarthritis using monoclonal antibodies.
Ann Rheum Dis.
1988;
47
300-307
-
83
Rinaldini L MJ.
The isolation of living cells from animal tissues.
Int Review Cytology.
1959;
7
587-647
-
84
Robbins J R, Thomas B, Tan L, Choy B, Arbiser J L, Berenbaum F, Goldring M B.
Immortalized human adult articular chondrocytes maintain
cartilage-specific phenotype and responses to interleukin-1beta.
Arthritis Rheum.
2000;
43
2189-2201
-
85 Sah R L-Y, Grodzinsky A J, Plaas A HK, Sandy J D. Effects of static and dynamic compression on matrix
metabolism in cartilage implants. In: K. E. Kuettner, R. Schleyerbach, J. G. Peyron, V. C.
Hascall (Hrsg) Articular cartilage and osteoarthritis. New York; Raven Press 1992: 373-391
-
86
Sailor L Z, Hewick R M, Morris E A.
Recombinant human bone morphogenetic protein-2 maintains the
articular chondrocyte phenotype in long-term culture.
J Orthop Res.
1996;
14
937-945
-
87
Schultz O, Keyszer G, Zacher J, Sittinger M, Burmester G R.
Development of in vitro model systems for destructive joint
diseases: novel strategies for establishing inflammatory pannus.
Arthritis Rheum.
1997;
40
1420-1428
-
88
Schwartz E R, Kirkpatrick P R, Thompson R C.
Sulfate metabolism in human chondrocyte cultures.
J Clin Invest.
1974;
54
1056-1063
-
89
Sittinger M, Perka C, Schultz O, Häupl T, Burmester G R.
Joint cartilage regeneration by tissue engineering.
Z Rheumatol.
1999;
58
130-135
-
90
Smith A U.
Survival of frozen chondrocytes isolated from cartilage of
adult mammals.
Nature.
1965;
205
782-784
-
91
Srivastava V M, Malemud C J, Sokoloff L.
Chondroid expression by lapine articular chondrocytes in
spinner culture following monolayer growth.
Connect Tissue Res.
1974;
2
127-136
-
92
Strangeways T SP.
Observations on the nutrition of articular cartilage.
Br Med J.
1920;
661-663
-
93
Thonar E J, Buckwalter J A, Kuettner K E.
Maturation-related differences in the structure and
composition of proteoglycans synthesized by chondrocytes from bovine articular
cartilage.
J Biol Chem.
1986;
261
2467-2474
-
94
Tyler J A.
Chondrocyte mediated depletion of articular cartilage
proteoglycans in vitro.
Biochem J.
1985;
260
493-507
-
95 Van Kampen G PJ, van de Stadt R J, van de Laar M AFJ, van der Korst J K. Two distinct matabolic pools of proteoglycans in articular
cartilage. In: K. E. Kuettner, R. Schleyerbach, J. G. Peyron, V. C.
Hascall (Hrsg) Articular cartilage and osteoarthritis. New York; Raven Press 1992: 281-290
-
96 Von der Mark K. Differentiation, modulation and dedifferentiation of
chondrocytes. In: Rheumatology. Vol. 10 Basel; Karger 1986: 272-315
-
97 Willmer E N. Introduction. In: E. N. Willmer Cells and tissues in culture. Methods, biology and
physiology. London, New York; Academic Press 1965: 1-17
-
98
Wolter J R, Meyer R F.
Sessile macrophages forming clear endothelium-like membrane
on inside of successful keratoprosthesis.
Trans Am Ophthalmol Soc.
1984;
82 187-82 202
-
99
Worster A A, Brower-Toland B D, Fortier L A, Bent S J, Williams J, Nixon A J.
Chondrocytic differentiation of mesenchymal stem cells
sequentially exposed to transforming growth factor-beta1 in monolayer and
insulin-like growth factor-I in a three-dimensional matrix.
J Orthop Res.
2001;
19
738-749
-
100
Zaucke F, Dinser R, Maurer P, Paulsson M.
Cartilage oligomeric matrix protein (COMP) and collagen IX
are sensitive markers for the differentiation state of articular primary
chondrocytes.
Biochem J.
2001;
358
17-24
Dr. med. K. Huch
Orthopädische Klinik der Universität Ulm mit
Querschnittgelähmtenzentrum (RKU)
Oberer Eselsberg 45
89081 Ulm
Phone: 0731/177-5119
Fax: 0731/177-1103
Email: klaus.huch@medizin.uni-ulm.de