Synlett 2002(11): 1743-1761  
DOI: 10.1055/s-2002-34860
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

From Kinetic to Thermodynamic Assembly of Catenanes: Error Checking, Supramolecular Protection and Oligocatenanes

Laurence Raehma, Darren G. Hamilton*b, Jeremy K. M. Sanders*a
University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK
e-Mail: jkms@cam.ac.uk;
Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075, USA
e-Mail: hamilton@mtholyoke.edu;
Further Information

Publication History

Received 7 January 2002
Publication Date:
21 October 2002 (online)

Abstract

Catenanes are molecules comprising at least two mechanically interlocked rings: they cannot be separated, yet do not possess covalent links between ring constituents. Over the last two decades several efficient templating mechanisms for the assembly of catenanes, and other topologically complex molecules, have been developed and exploited in the synthesis of numerous systems, often with impressive efficiency. Kinetically controlled assembly routes, employing transition metal complexation or amide hydrogen bonding interactions, have proved tremendously successful. A third arena of investigation, and perhaps the most thoroughly explored and exploited, is the utilisation of π-complementary components, principally bipyridinium dications and aromatic ethers. In our work electron deficient bipyridinium dications were replaced with uncharged, yet electron accepting, aromatic diimides. This replacement permitted the use of a variety of ring closing reactions for catenane formation by allowing us to step away from the structurally powerful but ultimately limited chemistry demanded by bipyridinium systems. A total of four ring-closing reactions were employed: acetylenic coupling, Mitsunobu alkylation, Grubbs’ alkene metathesis, and zinc(II)-bipyridyl ligation. The first three methods yielded fully covalent interlocked systems, the fourth a catenane containing a metallomacrocycle. The first two methods employed irreversible bond forming reactions in catenane formation, the latter two thermodynamically controlled processes.

This flexible system of interacting components, the synthetic chemistry used in their preparation, and the structural flexibility offered by the combination of these factors, is discussed in terms of a series of model systems leading to the proposition of a method for the synthesis of a polycatenane. Such systems, polymeric chains of interlocked rings, are unrealised yet coveted goals of chemists working in the area of supramolecular topology and are predicted to exhibit valuable and unusual material properties.

    References

  • 1 Frisch HL. Wasserman E. J. Am. Chem. Soc.  1961,  83:  3789 
  • 2 Wasserman E. J. Am. Chem. Soc.  1960,  82:  4433 
  • 3 Amabilino DB. Stoddart JF. Chem. Rev.  1995,  95:  2725 
  • 4 Dietrich-Buchecker CO. Marnot PA. Sauvage JP. Tetrahedron Lett.  1982,  23:  5291 
  • 5 Dietrich-Buchecker CO. Sauvage J.-P. Kintzinger JP. Tetrahedron Lett.  1983,  24:  5095 
  • 6 Dietrich-Buchecker CO. Sauvage JP. Chem. Rev.  1987,  87:  795 
  • 7 Armaroli N. Balzani V. Collin JP. Gavina P. Sauvage JP. Ventura B. J. Am. Chem. Soc.  1999,  121:  4397 
  • 8 Dietrich-Buchecker CO. Nierengarten JF. Sauvage J.-P. Tetrahedron Lett.  1992,  33:  3625 
  • 9 Carina RF. Dietrich-Buchecker C. Sauvage J.-P. J. Am. Chem. Soc.  1996,  118:  9110 
  • 10 Dietrich-Buchecker C. Frommberger B. Luer I. Sauvage J.-P. Vögtle F. Angew. Chem., Int. Ed. Engl.  1993,  32:  1434 
  • 11 Dietrich-Buchecker C. Leize E. Nierengarten JF. Sauvage J.-P. Van Dorsselaer A. J. Chem. Soc., Chem. Commun.  1994,  2257 
  • 12 Nierengarten JF. Dietrich-Buchecker CO. Sauvage J.-P. New J. Chem.  1996,  20:  685 
  • 13 Cardenas DJ. Gavina P. Sauvage J.-P. J. Am. Chem. Soc.  1997,  119:  2656 
  • 14 Ibukuro F. Fujita M. Yamaguchi K. Sauvage J.-P.
    J. Am. Chem. Soc.  1999,  121:  11014 
  • 15 Sauvage J.-P. Acc. Chem. Res.  1998,  31:  611 
  • 16 Cardenas DJ. Collin JP. Gavina P. Sauvage J.-P. De Cian A. Fischer J. Armaroli N. Flamigni L. Vicinelli V. Balzani V. J. Am. Chem. Soc.  1999,  121:  5481 
  • 17 Hunter CA. J. Am. Chem. Soc.  1992,  114:  5303 
  • 18 Adams H. Carver FJ. Hunter CA. J. Chem. Soc., Chem. Commun.  1995,  809 
  • 19 Vögtle F. Meier S. Hoss R. Angew. Chem., Int. Ed. Engl.  1992,  31:  1619 
  • 20 Ottenshildebrandt S. Nieger M. Rissanen K. Rouvinen J. Meier S. Harder G. Vögtle F. J. Chem. Soc., Chem. Commun.  1995,  777 
  • 21 Vögtle F. Jager R. Handel M. Ottenshildebrandt S. Pure Appl. Chem.  1996,  68:  225 
  • 22 Jager R. Vögtle F. Angew. Chem., Int. Ed. Engl.  1997,  36:  930 
  • 23 Mohry A. Schwierz H. Vögtle F. Synthesis  1999,  1753 
  • 24 Safarowsky O. Nieger M. Frohlich R. Vögtle F. Angew. Chem. Int. Ed.  2000,  39:  1616 
  • 25 Li QY. Vogel E. Parham AH. Nieger M. Bolte M. Frohlich R. Saarenketo P. Rissanen K. Vögtle F. Eur. J. Org. Chem.  2001,  4041 
  • 26 Johnston AG. Leigh DA. Pritchard RJ. Deegan MD. Angew. Chem., Int. Ed. Engl.  1995,  34:  1209 
  • 27 Johnston AG. Leigh DA. Nezhat L. Smart JP. Deegan MD. Angew. Chem., Int. Ed. Engl.  1995,  34:  1212 
  • 28 Leigh DA. Moody K. Smart JP. Watson KJ. Slawin AMZ. Angew. Chem., Int. Ed. Engl.  1996,  35:  306 
  • 29 Leigh DA. Murphy A. Smart JP. Deleuze MS. Zerbetto F. J. Am. Chem. Soc.  1998,  120:  6458 
  • 30 Raymo FM. Bartberger MD. Houk KN. Stoddart JF. J. Am. Chem. Soc.  2001,  123:  9264 
  • 31 Ashton PR. Goodnow TT. Kaifer AE. Reddington MV. Slawin AMZ. Spencer N. Stoddart JF. Vicent C. Williams DJ. Angew. Chem., Int. Ed. Engl.  1989,  28:  1396 
  • 32 Schroff LG. van der Weerdt AJA. Staalman DHJ. Verhoeven JW. de Boer TJ. Tetrahedron Lett.  1973,  1649 
  • 33 Borkent JH. Verhoeven JW. de Boer TJ. Chem. Phys. Lett.  1976,  42:  50 
  • 34 Lokey RS. Iverson BL. Nature (London)  1995,  375:  303 
  • 35 Hamilton DG. Lynch DE. Byriel KA. Kennard CHL. Aust. J. Chem.  1997,  50:  439 
  • 36 Dietrich-Buchecker CO. Khemiss A. Sauvage J.-P. J. Chem. Soc., Chem. Commun.  1986,  1376 
  • 37 Hamilton DG. Sanders JKM. Davies JE. Clegg W. Teat SJ. Chem. Commun.  1997,  897 
  • 38 Anelli PL. Ashton PR. Ballardini R. Balzani V. Delgado M. Gandolfi MT. Goodnow TT. Kaifer AE. Philp D. Pietraszkiewicz M. Prodi L. Reddington MV. Slawin AMZ. Spencer N. Stoddart JF. Vicent C. Williams DJ. J. Am. Chem. Soc.  1992,  114:  193 
  • 39 Hamilton DG. Davies JE. Prodi L. Sanders JKM. Chem.-Eur. J.  1998,  4:  608 
  • 40 Hamilton DG. Prodi L. Feeder N. Sanders JKM. J. Chem. Soc., Perkin Trans. 1  1999,  1057 
  • 41 Hamilton DG. Feeder N. Prodi L. Teat SJ. Clegg W. Sanders JKM. J. Am. Chem. Soc.  1998,  120:  1096 
  • 42 Zhang Q. Hamilton DG. Feeder N. Teat SJ. Goodman JM. Sanders JKM. New J. Chem.  1999,  23:  897 
  • 43 Hansen JG. Feeder N. Hamilton DG. Gunter MJ. Becher J. Sanders JKM. Org. Lett.  2000,  2:  449 
  • 44 Houk KN. Menzer S. Newton SP. Raymo FM. Stoddart JF. Williams DJ. J. Am. Chem. Soc.  1999,  121:  1479 
  • 45 Leigh DA. Lusby PJ. Teat SJ. Wilson AJ. Wong JKY. Angew. Chem. Int. Ed.  2001,  40:  1538 
  • 46 Yan LZ. Dawson PE. Angew. Chem. Int. Ed.  2001,  40:  3625 
  • 47 Wikoff WR. Liljas L. Duda RL. Tsuruta H. Hendrix RW. Johnson JE. Science  2000,  289:  2129 
  • 48 Yeh CY. Chang CJ. Nocera DG. J. Am. Chem. Soc.  2001,  123:  1513 
  • 49 Yellin RA. Green BS. Knossow M. Rysanek N. Tsoucaris G. J. Inclusion Phenom.  1985,  3:  317 
  • 50 Amabilino DB. Ashton PR. Perezgarcia L. Stoddart JF. Angew. Chem., Int. Ed. Engl.  1995,  34:  2378 
  • 51 Fujita M. Ibukuro F. Hagihara H. Ogura K. Nature (London)  1994,  367:  720 
  • 52 Fujita M. Acc. Chem. Res.  1999,  32:  53 
  • 53 Fujita M. Aoyagi M. Ibukuro F. Ogura K. Yamaguchi K. J. Am. Chem. Soc.  1998,  120:  611 
  • 54 Fujita M. Fujita N. Ogura K. Yamaguchi K. Nature (London)  1999,  400:  52 
  • 55 McArdle CP. Irwin MJ. Jennings MC. Puddephatt RJ. Angew. Chem. Int. Ed.  1999,  38:  3376 
  • 56 McArdle CP. Jennings MC. Vittal JJ. Puddephatt RJ. Chem.- Eur. J.  2001,  7:  3572 
  • 57 Bilyk A. Harding MM. J. Chem. Soc., Chem. Commun.  1995,  1697 
  • 58 Houghton MA. Bilyk A. Harding MM. Turner P. Hambley TW. J. Chem. Soc., Dalton Trans.  1997,  2725 
  • 59 Try AC. Harding MM. Hamilton DG. Sanders JKM. Chem. Commun.  1998,  723 
  • 60 Grubbs RH. Miller SJ. Fu GC. Acc. Chem. Res.  1995,  28:  446 
  • 61 Mohr B. Weck M. Sauvage J.-P. Grubbs RH. Angew. Chem., Int. Ed. Engl.  1997,  36:  1308 
  • 62 Dietrich-Buchecker C. Rapenne G. Sauvage JP. Coord. Chem. Rev.  1999,  186:  167 
  • 63 Hamilton DG. Feeder N. Teat SJ. Sanders JKM. New J. Chem.  1998,  22:  1019 
  • 64 Marsella MJ. Maynard HD. Grubbs RH. Angew. Chem., Int. Ed. Engl.  1997,  36:  1101 
  • 65 Hamilton DG. Sanders JKM. Chem. Commun.  1998,  1749 
  • 66 Kidd TJ. Leigh DA. Wilson AJ. J. Am. Chem. Soc.  1999,  121:  1599 
  • 67 Weidmann JL. Kern JM. Sauvage J.-P. G eerts Y. Muscat D. Mullen L. Chem. Commun.  1996,  1243 
  • 68 Muscat D. Kohler W. Rader HJ. Martin K. Mullins S. Muller B. Mullen K. Geerts Y. Macromolecules  1999,  32:  1737 
  • 69 Weidmann JL. Kern JM. Sauvage JP. Muscat D. Mullins S. Kohler W. Rosenauer C. Rader HJ. Martin K. Geerts Y. Chem.-Eur. J.  1999,  5:  1841 
  • 70 Menzer S. White AJP. Williams DJ. Belohradsky M. Hamers C. Raymo FM. Shipway AN. Stoddart JF. Macromolecules  1998,  31:  295 
  • 71 Simone DL. Swager TM. J. Am. Chem. Soc.  2000,  122:  9300 
  • 72 Amabilino DB. Ashton PR. Reder AS. Spencer N. Stoddart JF. Angew. Chem., Int. Ed. Engl.  1994,  33:  1286 
  • 73 Amabilino DB. Ashton PR. Boyd SE. Lee JY. Menzer S. Stoddart JF. Williams DJ. Angew. Chem., Int. Ed. Engl.  1997,  36:  2070 
  • 74 Amabilino DB. Ashton PR. Balzani V. Boyd SE. Credi A. Lee JY. Menzer S. Stoddart JF. Venturi M. Williams DJ. J. Am. Chem. Soc.  1998,  120:  4295 
  • 75 Schwanke F. Safarowsky O. Heim C. Silva G. Vögtle F. Helv. Chim. Acta.  2000,  83:  3279