Subscribe to RSS
DOI: 10.1055/s-2002-34885
Synthesis of All Carbon Linked Glycoside Clusters Round Benzene Scaffold via Sonogashira-Heck-Cassar Cross-Coupling of Iodobenzenes with Ethynyl C-Glycosides
Publication History
Publication Date:
21 October 2002 (online)
Abstract
The Pd-catalyzed carbon-carbon bond forming reaction between ethynyl C-glycosides and polyiodinated benzenes (Sonogashira-Heck-Cassar coupling) allows the introduction of various ethynylene glycoside chains on the phenyl ring thus creating glycoside clusters wherein the sugar moieties are linked to the benzene ring by an all carbon tether.
Key words
alkynes - clusters - cross-coupling - Sonogashira reaction - sugar acetylenes
-
1a
Lee YC.Lee RT. Acc. Chem. Res. 1995, 28: 321 -
1b
Sharon N.Lis H. Essays Biochem. 1995, 30: 59 -
1c
Lasky LA. Annu. Rev. Biochem. 1995, 64: 113 -
1d
Weis WI.Drickamer K. Annu. Rev. Biochem. 1996, 65: 441 -
1e
Sears P.Wong C.-H. Chem. Commun. 1998, 1161 -
1f
Essential of Glycobiology
Varki A.Cummings R.Esko J.Freeze H.Hart G.Marth J. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, New York: 1999. -
2a
Quiocho FA. Pure Appl. Chem. 1989, 61: 1293 -
2b
Glaudemans CPJ. Chem. Rev. 1991, 91: 25 -
2c
Toone EJ. Curr. Opin. Struct. Biol. 1994, 4: 719 -
2d
Lemieux RU. Acc. Chem. Res. 1996, 29: 373 -
3a
Connolly DT.Townsend RR.Kawaguchi K.Bell WR.Lee YC. J. Biol. Chem. 1982, 257: 939 -
3b
Lee YC.Townsend RR.Hardy MR.Lönngren J.Arnap J.Haraldsson M.Lönn H. J. Biol. Chem. 1983, 258: 199 -
3c
Lee RT.Lee YC. Biochem. Biophys. Res. Commun. 1988, 155: 1444 - 4 For a classification of various types
of glycoside clusters and relevant references, see:
Dondoni A.Kleban M.Hu X.Marra A.Banks HD. J. Org. Chem. 2002, 67: 4722 -
5a
Mammen M.Choi S.-K.Whitesides GM. Angew. Chem., Int. Ed. 1998, 37: 2754 -
5b
Davis BG.Jones JB. Synlett 1999, 1495 -
5c
Davis AP.Wareham RS. Angew. Chem., Int. Ed. 1999, 38: 2978 -
5d
Kitov PI.Sadowska JM.Mulvey G.Armstrong GD.Ling H.Pannu NS.Read RJ.Bundle DR. Nature (London) 2000, 403: 669 -
5e
Fan E.Zhang Z.Minke WE.Hou Z.Verlinde CLMJ.Hol WGJ. J. Am. Chem. Soc. 2000, 122: 2663 -
6a
Liu B.Roy R. J. Chem. Soc., Perkin Trans. 1 2001, 773 -
6b
Liu B.Roy R. Tetrahedron 2001, 57: 6909 -
6c
Liu B.Roy R. Chem. Commun. 2002, 594 - 7
Gan Z.Roy R. Tetrahedron Lett. 2000, 41: 1155 -
8a The
C-glucoside 1 was synthesized according
to the experimental procedure reported in the literature:
Lowary T.Meldal M.Helmboldt A.Vasella A.Bock K. J. Org. Chem. 1998, 63: 9657 -
8b
Mp 66-67 °C(pentane), [α] D²0 = +17.3 (c 2.0, CHCl3); lit. [9] mp 58 °C, [α]D 20 = +17.4 (c 1.6, CHCl3)
- 9
Alzeer J.Vasella A. Helv. Chim. Acta 1995, 78: 177 -
11a
Sonogashira K.Tohda Y.Hagihara N. Tetrahedron Lett. 1975, 50: 4467 -
11b
Dieck HA.Heck FR. J. Orgmet. Chem. 1975, 93: 259 -
11c
Cassar L. J. Orgmet. Chem. 1975, 93: 253 - For reviews, see:
-
12a
Sonogashira K. In Comprehensive Organic Synthesis Vol. 3:Trost BM.Fleming I. Pergamon Press; New York: 1991. p.521 -
12b
Rossi R.Carpita A.Bellina F. Org. Prep. Proced. Int. 1995, 27: 129 -
12c
Tsuji J. Palladium Reagents and Catalysts Wiley & Sons; Chichester: 1995. p.168 -
12d
Brandsma L.Vasilevsky SF.Verkruijsse HD. Application of Transition Metal Catalysts in Organic Synthesis Springer; Berlin: 1998. p.179 - 14
Godt A.Franzen C.Veit S.Enkelmann V.Pannier M.Jeschke G. J. Org. Chem. 2000, 65: 7575 - 16
Dondoni A.Giovannini PP.Marra A. J. Chem. Soc., Perkin Trans. 1 2001, 2380 - 17
Mattern DL. J. Org. Chem. 1984, 49: 3051
References
Compound 3: mp 178-180 °C (AcOEt-cyclohexane); [α]D 20 = +7.4 (c 1.0, CHCl3); 1H NMR selected data (C6D6): δ = 3.96 (dd, 1 H, J 1,3 = 2.2 Hz, J 3,4 = 9.7 Hz, H-3), 3.76 (dd, 1 H, J 4,5 = 8.8 Hz, J 5,6 = 9.7 Hz, H-5), 1.99 (d, 1 H, H-1).
13Compound 5: mp 150-151 °C(cyclohexane); [α]D 20 =-54.6 (c 1.0, CHCl3); 1H NMR (CDCl3): δ 7.40-7.25 and 7.17-7.12 (2 m, 44 H, Ar), 5.05 and 4.87 (2 d, 4 H, J = 10.7 Hz, PhCH 2), 4.96 and 4.87 (2 d, 4 H, J = 11.1 Hz, PhCH 2), 4.85 and 4.55 (2 d, 4 H, J = 11.0 Hz, PhCH 2), 4.66 and 4.57 (2 d, 4 H, J = 12.4 Hz, PhCH 2), 4.33-4.27 (m, 2 H, 2 H-3), 3.81-3.66 (m, 10 H), 3.55-3.49 (m, 2 H); MALDI-TOF MS: 1196.1 (M + Na + 2 H), 1212.4 (M + K + 2 H). Compound 6: mp 180-181 °C (AcOEt-MeOH); [α]20 D = -33.1 (c 0.8, CH3OH); 1H NMR (D2O): δ 7.12 (s, 4 H, Ar), 3.77 (dd, 2 H, J 7,8a = 0.8 Hz, J 8a,8b = 12.2 Hz, 2 H-8a), 3.58-3.51 (m, 2 H, 2 H-8b), 3.28-3.16 (m, 6 H), 3.11-3.02 (m, 4 H), 2.77-2.52, 2.03-1.90, and 1.65-1.52 (3 m, 8 H, 4 H-1, 4 H-2). Compound 7: mp 279-280 °C (CHCl3-Et2O); [α]D 20 =-58.5 (c 1.1, CHCl3); 1H NMR (C6D6): δ 7.12 (s, 4 H, Ar), 5.50 (dd, 2 H, J 3,4 = 9.9 Hz, J 4,5 = 9.1 Hz, 2 H-4), 5.32 (dd, 2 H, J 5,6 = 9.3 Hz, 2 H-5), 5.24 (dd, 2 H, J 6,7 = 9.6 Hz, 2 H-6), 4.22 (dd, 1 H, J 7,8a = 4.6 Hz, J 8a,8b = 12.6 Hz, 2 H-8a), 4.07 (d, 2 H, 2 H-3), 4.02 (dd, 2 H, J 7,8b = 2.0 Hz, 2 H-8b), 3.13 (ddd, 2 H, 2 H-7), 1.69, 1.68, 1.66, and 1.64 (4 s, 24 H, 8 Ac); MALDI-TOF MS: 810.2 (M + Na), 826.8 (M + K). Compound 8: mp 254-255 °C (MeOH-AcOEt); [α]D 20 = 0 (c 0.3, CH3OH); [α]43620 = -9.0 (c 0.3, CH3OH); 1H NMR (CD3OD): δ 7.45 (s, 4 H, Ar), 4.21-4.15 (m, 2 H, 2 H-3), 3.90 (dd, 2 H, J 7,8a = 0.8 Hz, J 8a,8b = 12.0 Hz, 2 H-8a), 3.72-3.64 (m, 2 H, 2 H-8b), 3.43-3.27 (m, 8 H).
15Compound 10:
mp 133-134 °C (AcOEt-MeOH); [α]D
20 =
-48.5
(c 1.2, CHCl3); 1H
NMR (CDCl3): δ 7.43 (s, 3 H, Ar), 7.39-7.22
and 7.18-7.13 (2 m, 60 H, 12 Ph), 4.96 and 4.82 (2 d, 6
H, J = 10.7 Hz, PhCH
2), 4.95 and 4.86 (2 d, 6
H, J = 11.0 Hz, PhCH
2), 4.85 and 4.56 (2 d, 6
H, J = 11.0 Hz, PhCH
2), 4.65 and 4.56 (2 d, 6
H, J = 12.3 Hz, PhCH
2), 4.30-4.24 (m,
3 H, 3 H-3), 3.81-3.66 (m, 15 H), 3.54-3.48 (m,
3 H); MALDI-TOF MS: 1742.0 (M + Na), 1758.4 (M + K). Compound 11: mp 234-236 °C (AcOEt); [α]D
20 = -58.4
(c 0.9, CHCl3); 1H
NMR (C6D6): δ 7.33 (s, 3 H, Ar),
5.46 (dd, 3 H, J
3,4 = 9.8
Hz, J
4,5 = 9.2 Hz,
3 H-4), 5.32 (dd, 3 H, J
5,6 = 9.1
Hz, 3 H-5), 5.24 (dd, 3 H, J
6,7 = 9.6
Hz, 3 H-6), 4.23 (dd, 3 H, J
7,8a = 4.5
Hz, J
8a,8b = 12.5
Hz, 3 H-8a), 4.03 (dd, 3 H, J
7,8b = 2.0
Hz, 3 H-8b), 4.00 (d, 3 H, 3 H-3), 3.14 (ddd, 3 H, 3 H-7), 1.79,
1.68, 1.66, and 1.65 (4 s, 36 H, 12 Ac); MALDI-TOF MS:
1164.3 (M + Na), 1180.7 (M + K). Compound 12: mp 178-180 °C, dec.
(MeOH); [α]D
20 = +5.5 (c 0.2, CH3OH); 1H
NMR (D2O): δ 7.55 (s, 3 H, Ar), 4.24-4.17
(m, 3 H, 3 H-3), 3.80 (dd, 3 H, J
7,8a = 0.9
Hz, J
8a,8b = 12.5
Hz, 3 H-8a), 3.60 (dd, 3 H, J
7,8b = 5.0
Hz, 3 H-8b), 3.45-3.28 (m, 12 H). Compound 13: [α]D
20 = -39.6
(c 0.8, CH3OH); 1H
NMR (D2O): δ 6.93 (s, 3 H, Ar), 3.80 (dd, 3
H, J
7,8a = 0.9 Hz, J
8a,8b = 12.2 Hz,
3 H-8a), 3.58 (dd, 3 H, J
7,8b = 5.0
Hz, 3 H-8b), 3.28-3.16 (m, 9 H), 3.13-2.98 (m,
6 H), 2.77-2.54, 2.05-1.91, and 1.69-1.55
(3 m, 12 H, 6 H-1, 6 H-2). Compound 14:
mp 116 °C, softening 86 °C(cyclohexane); [α]D
20 = -10.8
(c 0.5, CHCl3); 1H
NMR (CDCl3) selected data: δ 7.41 (s, 3 H, Ar),
7.35-7.15 (m, 105 H, 21 Ph), 4.23-4.18 (m, 3 H,
3 H-3), 3.71-3.59 (m, 18 H), 3.42-3.18 (m, 15
H), 2.22-2.15 and 1.55-1.46 (2 m, 12 H, 6 H-8,
6 H-9); MALDI-TOF MS: 3035.7 (M + Na + 3
H), 3051.7 (M + K + 3 H). Compound 15Ac:
mp 245-246 °C (EtOAc); [α]D
20 =-13.0
(c 0.4, CHCl3); 1H
NMR (CDCl3): δ 6.79 (s, 3 H, Ar), 5.20 (dd,
3 H, J
11,12 = J
12,13 = 9.4 Hz,
3 H-12), 5.14 (dd, 3 H, J
4,5 = J
5,6 = 9.3 Hz, 3
H-5), 5.06 (dd, 3 H, J
13,14 = 10.0
Hz, 3 H-13), 4.91 (dd, 3 H, J
10,11 = 9.9
Hz, 3 H-11), 4.86 (dd, 3 H, J
3,4 = 9.9
Hz, 3 H-4), 4.86 (dd, 3 H, J
6,7 = 9.9
Hz, 3 H-6), 4.29 (dd, 3 H, J
14,15a = 5.0, J
15a,15b = 12.2 Hz, 3
H-15a), 4.11 (dd, 3 H, J
14,15b = 2.2
Hz, 3 H-15b), 3.67 (ddd, 3 H, 3 H-14), 3.46-3.33 (m, 9 H, 3 H-3,
3 H-7, 3 H-10), 2.87-2.76, 2.51-2.40, 1.94-1.85,
1.77-1.68, and 1.52-1.39 (5 m, 24 H), 2.12, 2.08,
2.06, 2.02, 2.01, and 1.98 (6 s, 63 H, 21 Ac).
A solution of 2 (157 mg, 0.44 mmol) and 16 (58 mg, 0.10 mmol) in anhydrous DMF (1.6 mL) and Et3N (1.6 mL) was degassed by bubbling argon at r.t. for 20 min. To the solution was added commercially available Pd(PPh3)4 (23 mg, 0.02 mmol) and the suspension was stirred at 60 °C in an argon atmosphere. After an additional 24 h at 60 °C the red-brown solution was concentrated, then diluted with CH2Cl2 (50 mL), washed with 1 M phosphate buffer at pH = 7 (20 mL), dried (Na2SO4), and concentrated. The residue was eluted from a column of silica gel with EtOAc-cyclohexane (from 2:1 to 3:1) to give 17 (94 mg) slightly contaminated by uncharacterized byproducts. Trituration of this material with Et2O (ca. 2 mL) afforded pure 17 (74 mg, 49%) as a white solid; mp 119-120 °C (MeOH); [α]D 20 = -70.0 (c 1.0, CHCl3); 1H NMR (C6D6): δ 7.30 (s, 2 H, Ar), 5.58-5.51 (m, 4 H, 4 H-4), 5.42-5.31 (m, 8 H, 4 H-5, 4 H-6), 4.31 (d, 4 H, J 3,4 = 9.8 Hz, 4 H-3), 4.30 (dd, 4 H, J 7,8a = 4.5 Hz, J 8a,8b = 12.3 Hz, 4 H-8a), 4.14 (dd, 4 H, J 7,8b = 1.8 Hz, 4 H-8b), 3.35-3.29 (m, 4 H, 4 H-7), 1.84, 1.74, 1.72, and 1.64 (4 s, 48 H, 16 Ac); MALDI-TOF MS: 1519.3 (M + Na), 1535.8 (M + K).
19Compound 18:
mp 292-294 °C, dec. (MeOH); [α]D
20 = -4.1 (c 0.3, H2O); 1H
NMR (D2O): δ 7.65 (s, 2 H, Ar), 4.29-4.24 (m,
4 H, 4 H-3), 3.81 (dd, 4 H, J
7,8a = 1.1
Hz, J
8a,8b = 12.5
Hz, 4 H-8a), 3.63 (dd, 4 H, J
7,8b = 5.1
Hz, 4 H-8b), 3.48-3.30 (m, 16 H). Compound 19: [α]D
20 = -39.6
(c 0.6, H2O); 1H
NMR (D2O): δ 6.98 (s, 2 H, Ar), 3.75 (dd, 4
H, J
7,8a = 0.8 Hz,
J
8a,8b = 12.5 Hz,
4 H-8a), 3.54 (dd, 4 H, J
7,8b = 3.8
Hz,
4 H-8b), 3.23-3.12 (m, 12 H), 3.03-2.98
(m, 8 H), 2.71-2.56 (m, 8 H), 1.95-1.83 (m, 4
H), 1.60-1.46 (m, 4 H).