Abstract
CeCl3 catalyzes the addition of Et2 Zn to
a variety of alipahtic and aromatic aldehydes and ketones in THF
in the presence of TMSCl as a scavenger. Optimization of the applied
solvent allowed to avoid the TMSCl mediated addition using CeCl3 ·(THF)2 or
Ce(i -PrO)3 as catalysts. This
represents the first application of lanthanide compounds for the
addition of Et2 Zn to carbonyl compounds.
Key words
lanthanides - cerium - catalysis - diethylzinc - addition to carbonyls
References 1 Lanthanides in Organic Synthesis, part
5. For part 4, see ref. 3b.
2a
Molander GA.
Chem. Rev.
1992,
92:
29
2b
Imamoto T.
Lanthanides in Organic Synthesis
Academic
Press;
London:
1999.
2c
Kobayashi S.
Lanthanides: Chemistry and Use in Organic
Synthesis
Springer Verlag;
Heidelberg:
1999.
3a
Groth U.
Jeske M.
Angew.
Chem. Int. Ed.
2000,
39:
574
3b
Groth U.
Jeske M.
Synlett
2001,
129
For a review, see:
4a
Soai K.
Niwa S.
Chem. Rev.
1992,
92:
833
4b
Soai K.
Shibata T. In
Comprehensive Asymmetric
Catalysis
Jacobsen EN.
Springer Verlag;
Heidelberg:
2000.
chap.
26.1.
Lewis bases:
5a
Langer F.
Schwinjk L.
Devasagayaraj A.
Chavant P.-V.
Knochel P.
J.
Org. Chem.
1996,
61:
8229
5b
Kitamura M.
Oka H.
Noyori R.
Tetrahedron
1999,
55:
3605
5c
Soai K.
Yokoyama S.
Ebihara K.
J. Chem.
Soc., Chem. Commun.
1987,
1690
5d
Rosini C.
Franzini L.
Pini D.
Salvadori P.
Tetrahedron: Asymmetry
1990,
1:
587
5e
Kitajima H.
Ito K.
Aoki Y.
Katsuki T.
Bull. Chem. Soc. Jpn.
1997,
70:
207
5f
Huang W.
Hu Q.
Pu L.
J.
Org. Chem.
1998,
63:
1364
5g
Cobb AJA.
Marson CM.
Tetrahedron:
Asymmetry
2001,
12:
1547
5h
Nevalainen M.
Nevalainen V.
Tetrahedron: Asymmetry
2001,
12:
1771
5i
Liu D.-X.
Zhang L.-C.
Wang Q.
Da C.-S.
Xin Z.-Q.
Wang R.
Choi MCK.
Chan ASC.
Org. Lett.
2001,
3:
2733
5j
Schinnerl M.
Seitz M.
Kaiser A.
Reiser O.
Org. Lett.
2001,
3:
4259
Lewis acids:
6a
Yoshioka M.
Kawakita T.
Ohno M.
Tetrahedron
Lett.
1989,
30:
1657
6b
Seebach D.
Plattner DA.
Beck AK.
Wang YM.
Hunziker D.
Helv. Chim. Acta
1992,
75:
2171
6c
Keller F.
Rippert AJ.
Helv. Chim. Acta
1999,
82:
125
6d
Nakamura Y.
Takeuchi S.
Ohgo Y.
Curran DP.
Tetrahedron Lett.
2000,
41:
57
6e
Fan Q.-H.
Liu G.-H.
Chen X.-M.
Deng G.-J.
Chan ASC.
Tetrahedron: Asymmetry
2001,
12:
1559
7a
Corey EJ.
Boaz NW.
Tetrahedron
Lett.
1985,
26:
6019
7b
Matszawa S.
Horiguchi Y.
Nakamura E.
Kuwajima I.
Tetrahedron
1989,
45:
349
7c
Jeske M.
Ph.D.
Dissertation
Universität;
Konstanz:
2000.
8a
Mehrotra RC.
Batwara JM.
Inorg. Chem.
1970,
9:
2505
8b
Groth U.
Eckenberg P.
Köhler T.
Liebigs
Ann. Chem.
1994,
673
9
General Experimental
Procedure: The reactions were carried out under argon atmosphere
using Schlenk techniques. Substances, which are sensitive against
moisture and oxidation were stored in a glove box. Reactions were typically
performed on a 1.5 mmol scale. In a Schlenk tube 5 mL of solvent
were added to the catalyst (usually 0.075 mmol, 0.05 equiv).
Then, 3 mL of an 1 M solution of diethylzinc (3 mmol, 2 equiv) in
the applied solvent were transferred to the reaction via canulla.
To the reaction mixture 1.5 mL of a 1 M solution of aldehyde (1.5
mmol, 1 equiv) in the used solvent were then added slowly
by using a syringe pump. When TMSCl was used as a scavenger 1.5
mL of a 1.5 M solution (2.25 mmol, 1.5 equiv) in the chosen solvent
were added simultaneously using the same syringe pump. After careful
addition of 25 mL of sat. aq NH4 Cl or 2 N HCl, respectively,
the aqueous phase was extracted with ethylether (3 × 30
mL). The combined and dried (MgSO4 ) organic layers were
then liberated from the solvent and purified by flash chromatography
eluting with EtOAc/petroleum ether.