Subscribe to RSS
DOI: 10.1055/s-2003-37105
Enantiopure Guanidine Bases For Enantioselective Enone Epoxidations: 1, Acyclic Guanidines
Publication History
Publication Date:
07 February 2003 (online)
![](https://www.thieme-connect.de/media/synlett/200303/lookinside/thumbnails/10.1055-s-2003-37105-1.jpg)
Abstract
A range of structurally and functionally varied enantiopure guanidines has been prepared and evaluated in the enantioselective epoxidation of 3-tert-butoxycarbonylamino-4,4-dimethoxycyclohexa-2,5-dien-1-one 1 using tert-butylhydroperoxide. Successful enantioselective epoxidations were observed and useful structure-activity data obtained, but the reactions were slow and the maximum ee observed was 30%.
Key words
enantioselective - epoxidation - enones - guanidines - stereoselectivity
- For reviews on epoxy ketones as versatile building blocks see:
-
1a
Lauret C. Tetrahedron: Asymmetry 2001, 12: 2359 -
1b
Bonini C.Righi G. Tetrahedron 2002, 58: 4981 - 2 For a review see:
Porter MJ.Skidmore J. Chem. Commun. 2000, 1215 -
3a
Gautier ECL.Lewis NJ.McKillop A.Taylor RJK. Tetrahedron Lett. 1994, 35: 8759 -
3b
McKillop A.McLaren L.Taylor RJK.Watson RJ.Lewis N. J. Chem. Soc., Perkin Trans. 1 1996, 1385 -
3c
Graham AE.McKerrecher D.Davies DH.Taylor RJK. Tetrahedron Lett. 1996, 37: 7445 -
3d
Graham AE.Taylor RJK. J. Chem. Soc., Perkin Trans. 1 1997, 1087 -
3e
Ragot JP.Steeneck C.Alcaraz M.-L.Taylor RJK. J. Chem. Soc., Perkin Trans. 1 1999, 1073 -
3f
Runcie KA.Taylor RJK. Org. Lett. 2001, 3: 3237 -
4a
Alcaraz L.Macdonald G.Ragot J.Lewis NJ.Taylor RJK. Tetrahedron 1999, 55: 3707 -
4b
Alcaraz L.Macdonald G.Ragot J.Lewis NJ.Taylor RJK. J. Org. Chem. 1998, 63: 3526 -
4c
Taylor RJK.Alcaraz L.Kapfer-Eyer I.Macdonald G.Wei X.Lewis NJ. Synthesis 1997, 775 ; and references therein - 5
Macdonald G.Alcaraz L.Lewis NJ.Taylor RJK. Tetrahedron Lett. 1998, 39: 5433 - 6
Dwyer CL.Gill CD.Ichihara O.Taylor RJK. Synlett 2000, 704 -
7a
Genski T.Macdonald G.Wei X.Lewis N.Taylor RJK. Synlett 1999, 795 -
7b
Genski T.Macdonald G.Wei X.Lewis N.Taylor RJK. Arkivoc 2000, 1: 266 - For recent reviews see:
-
8a
Ishikawa T.Isobe T. Chem. Eur. J. 2002, 8: 553 -
8b
Schmidtchen FP.Berger M. Chem. Rev. 1997, 97: 1609 ; and references therein - For recent publications in the area of enantiopure guanidines see: Michael Additions:
-
9a
Ishikawa T.Araki Y.Kumamoto T.Seki H.Fukuda K.Isobe T. Chem. Commun. 2001, 245 ; and references therein -
9b
Howard-Jones A.Murphy PJ.Thomas DA.Caulkett PWR. J. Org. Chem. 1999, 64: 1039 -
9c
Ma K.Cheng K. Tetrahedron: Asymmetry 1999, 10: 713 -
10a Strecker
Synthesis:
Corey EJ.Grogan MJ. Org. Lett. 1999, 1: 157 -
10b Henry Reaction:
Chinchilla R.Nájera C.Sánchez-Agulló P. Tetrahedron: Asymmetry 1994, 5: 1393 - 11
Yamamoto Y.Kojima S. In The Chemistry of Amidines and Imidates Vol. 2:Patai S.Rappoport Z. Wiley; New York: 1991. -
12a
Kim KS.Qian L. Tetrahedron Lett. 1993, 34: 7677 -
12b
Levallet C.Lerpiniere J.Ko SY. Tetrahedron 1997, 53: 5291 -
14a
Baker TJ.Tomioka M.Goodman M. Org. Synth. 2000, 78: 91 -
14b
Zapf CW.Creighton CJ.Tomioka M.Goodman M. Org. Lett. 2001, 3: 1133 ; and references therein - Preparation of 8d·HCl salt:
-
15a
(S)-1-Methoxy-2-propyl-amine (2.59 g, 29.1 mmol) was added to a solution of N,N′-di-Boc-N′′-trifluoromethanesulfonylguanidine 6 (7.59 g, 19.4 mmol) and diisopropyl(ethyl)amine (5.1 cm3, 29.3 mmol) in CH2Cl2, under argon. The reaction was at r.t. for 2 h before the solvent was removed under reduced pressure and the residue was purified by flash silica chromatography (CH2Cl2) to give N,N′-di-Boc-N′′-[(1S)-2-methoxy-1-methylethyl]guanidine 7d (6.12 g, 95%) as a white solid, mp 79-80 °C; [α]D 20 -6.5 (c 1.0, CHCl3) which was fully characterised.
-
15b
The Boc-protected guanidine 7d (6.05 g, 18.2 mmol) was dissolved in approx. 3 M anhyd methanolic HCl (100 cm3) and was stirred at 40 °C, under argon, for 18 h. The solvent was then removed under reduced pressure to afford N′′-[(1S)-2-methoxy-1-methylethyl]guanidine hydrochloride (8d·HCl) quantitatively (3.03 g) as a hygroscopic gum, [α]D 20 -24.3 (c 1.00, MeOH). IR (neat): νmax: 3253 and 3147 (NH), 2981 and 2934 (CH), 1640 (CN3) cm-1. 1H NMR (400 MHz, CD3OD): δ = 3.84-3.79 (1 H, m, CH), 3.47 (1 H, dd, J = 9.5 and 4.0, CHAHBOMe), 3.40 (3 H, s, OCH3), 3.37 (1 H, dd, J = 9.5 and 6.5, CHAHBOMe), 1.23 (3 H, d, J = 6.5, CH3). 13C NMR (100 MHz, CD3OD): δC = 158.3 (CN3), 76.9 (CH), 59.4 (OCH3), 48.5 (CH2), 17.4 (CH3). MS (CI): m/z = 132(100) [MH+]; HRMS (CI): Calcd for C5H14N3O: 132.1137. Found: [MH+]: 132.1132 (2.7 ppm error).
- 16 The C2-symmetric pyrrolidines
were prepared according to:
Yamamoto Y.Hoshino J.Fujimoto Y.Ohmoto J.Sawada S. Synthesis 1993, 298 - 17
Guo Z.-X.Cammidge AN.Horwell DC. Synth. Commun. 2000, 30: 2933 ; and references therein
References
All new compounds were fully characterised by 1H NMR, 13C NMR and IR spectroscopies plus HRMS or elemental analysis.
18Chiral HPLC was carried out using a Chiralcel OJ column (25 cm × 4.6 mm) with hexane-isopropanol (98:2) as eluent at a flow rate of 1 mL/min and detection at 276 nm.