Zusammenfassung
Hintergrund: Störungen der Hämodynamik sind Ursache zahlreicher Augenerkrankungen, so dass ein
großer Bedarf an Methoden zur Bestimmung der okulären Durchblutung besteht. Einige
Studien sehen diagnostische Vorteile der Farb-Doppler-Sonographie (CDI). Über Korrelationen
der CDI mit anderen Methoden ist wenig bekannt. Patienten und Methoden: n = 56 Augen wurden mit Laser-Doppler-Flowmetrie (LDF), Langham-OBF (LOBF) und CDI
untersucht und der Spearman-Korrelationskoeffizient ermittelt (R). Ergebnisse: LDF korrelierte mit dem Maximum (TAMx) und dem Mittelwert (TAMn) der durchschnittlichen
Flussgeschwindigkeit gemessen mit der CDI in der langen, nicht aber der kurzen hinteren
Ziliararterie (TAMx: R = 0,466, p = 0,038, n = 20; TAMn: R = 0,462, p = 0,040, n =
20). Der LOBF-Messwert korrelierte mit dem Pulsatilitätsindex (PI) und dem Widerstandsindex
(RI) der kurzen (PI: R = 0,514, p = 0,002, n = 35; RI: R = 0,438, p = 0,008, n = 35)
und langen hinteren Ziliararterie (PI: R = 0,436, p = 0,009, n = 35; RI: R = 0,506,
p = 0,002, n = 35) aus der CDI. Diskussion: Die Methoden stützen sich gegenseitig durch partielle Korrelationen. Die CDI erhebt
zusätzliche, detailliertere Parameter der okulären Perfusion.
Abstract
Background: Ocular haemodynamics play a prominent part in many ocular diseases. This leads to
the need to determine ocular perfusion. Several studies reveal advantages of colour
Doppler imaging (CDI) in ophthalmologic diagnostics. Little is known about correlation
of CDI results with other methods. Patients and methods: N = 56 eyes were examined with CDI, laser Doppler flowmetry (LDF) and Langham-OBF
(LOBF). Correlations between the methods were identified by the Spearman correlation
coefficient (R). Results: LDF correlated with time average maximum (TAMx) and mean (TAMn) velocity assessed
by CDI in the long posterior ciliary artery (TAMx: R = 0.466, p = 0.038, n = 20; TAMn:
R = 0.462; p = 0.040, n = 20), but not in the short posterior ciliary artery. LOBF
correlated with pulsatility index (PI) and resistive index (RI) of CDI in short (PI:
R = 0.514, p = 0.002, n = 35; RI: R = 0.438, p = 0.008, n = 35) and long posterior
ciliary arteries (PI: R = 0.436, p = 0.009, n = 35; RI: R = 0.506, p = 0.002, n =
35). Discussion: Methods strengthen each other by partial correlation. CDI allows a more detailed
insight into ocular perfusion than the other methods.
Schlüsselwörter
Aderhautperfusion - Farb-Doppler-Sonographie der retrobulbären Gefäße - Glaukom -
Laser-Doppler-Flowmetrie - okuläre Hämodynamik
Key words
Choroid perfusion - colour Doppler imaging - glaucoma - laser Doppler flowmetry -
ocular perfusion
Literatur
1
Bastiaensen L A, Vandoninck J J.
X-recessive angiopathic opticopathy.
Doc Ophthalmol.
1982;
52 (3 - 4)
227-239
2
Baxter G M, Williamson T H.
Color Doppler imaging of the eye: normal ranges, reproducibility, and observer variation.
J Ultrasound Med.
1995;
14 (2)
91-96
3
Boehm A G, Pillunat L E, Koeller U. et al .
Regional distribution of optic nerve head blood flow.
Graefes Arch Clin Exp Ophthalmol.
1999;
237 (6)
484-488
4
Chung H S, Harris A, Kagemann L, Martin B.
Peripapillary retinal blood flow in normal tension glaucoma.
Br J Ophthalmol.
1999;
83 (4)
466-469
5
Feke G T, Tagawa H, Deupree D M. et al .
Blood flow in the normal human retina.
Invest Ophthalmol Vis Sci.
1989;
30 (1)
58-65
6
Ghanchi F D, Williamson T H, Lim C S. et al .
Colour Doppler imaging in giant cell (temporal) arteritis: serial examination and
comparison with non-arteritic anterior ischaemic optic neuropathy.
Eye.
1996;
10
459-464
7
Goldmann H, Schmidt T.
On applanation tonography.
Ophthalmologica.
1965;
150 (1)
65-75
8
Goldmann H.
Open-angle glaucoma.
Br J Ophthalmol.
1972;
56 (3)
242-248
9
Jansson T, Persson H W, Lindstrom K.
Estimation of blood perfusion using ultrasound.
Proc Inst Mech Eng [H].
1999;
213 (2)
91-106
10
Klingmuller V, Schmidt K G, von Ruckmann A. et al .
Doppler sonography of the short posterior ciliary artery in patients with primary
open angle glaucoma.
Ultraschall Med.
2000;
21 (1)
32-37
11
Langham M E, To'Mey K F.
A clinical procedure for the measurements of the ocular pulse-pressure relationship
and the ophthalmic arterial pressure.
Exp Eye Res.
1978;
27 (1)
17-25
12
Lieb W E, Cohen S M, Merton D A. et al .
Color Doppler imaging of the eye and orbit. Technique and normal vascular anatomy.
Arch Ophthalmol.
1991;
109 (4)
527-531
13
Lieb W E, Flaharty P M, Sergott R C. et al .
Color Doppler imaging provides accurate assessment of orbital blood flow in occlusive
carotid artery disease.
Ophthalmology.
1991;
98 (4)
548-552
14
Mack H G, O'Day J, Currie J N.
Delayed choroidal perfusion in giant cell arteritis.
J Clin Neuroophthalmol.
1991;
11 (4)
221-227
15
Maumenee A E.
Causes of optic nerve damage in glaucoma. Robert N. Shaffer lecture.
Ophthalmology.
1983;
90 (7)
741-752
16
Michelson G, Schmauss B, Langhans M J. et al .
Principle, validity, and reliability of scanning laser Doppler flowmetry.
J Glaucoma.
1996;
5 (2)
99-105
17
Pillunat L E, Stodtmeister R, Marquardt R, Mattern A.
Ocular perfusion pressures in different types of glaucoma.
Int Ophthalmol.
1989;
13 (1 - 2)
37-42
18
Schmidt K G, Ruckmann A V, Mittag T W. et al .
Reduced ocular pulse amplitude in low tension glaucoma is independent of vasospasm.
Eye.
1997;
11
485-488
19
Schumann J, Orgul S, Gugleta K. et al .
Interocular difference in progression of glaucoma correlates with interocular differences
in retrobulbar circulation.
Am J Ophthalmol.
2000;
129 (6)
728-733
20
Vilser W, Schweitzer D, Konigsdorffer E, Jutte A.
Principal possibilities and limitations of fluorescent angiographic procedures for
the measurement of the flow-physical magnitudes of the retinal circulatory system
(author's transl).
Albrecht Von Graefes Arch Klin Exp Ophthalmol.
1981;
217 (3)
199-211
Dr. med. Oliver Zeitz
Universitätsklinikum Hamburg-Eppendorf · Klinik und Poliklinik für Augenheilkunde
Martinistraße 52
20246 Hamburg
Email: zeitz@uke.uni-hamburg.de