Subscribe to RSS
DOI: 10.1055/s-2003-38730
The Alkylation of Aminophosphanes: A New Synthesis of Iminophosphoranes
Publication History
Publication Date:
17 April 2003 (online)
Abstract
Iminophosphoranes are prepared by P-alkylation of easily available N,P,P-trisubstituted aminophosphanes with reactive alkyl halides and further deprotonation.
Key words
alkyl halides - alkylation - phosphorus - ylides - iminophosphoranes
-
1a
Gusar NI. Russ. Chem. Rev. (Engl. Transl.) 1991, 60: 146 -
1b
Barluenga J.Palacios F. Org. Prep. Proced. Int. 1991, 23: 1 -
1c
Eguchi S.Matsushita Y.Yamashita K. Org. Prep. Proced. Int. 1992, 24: 209 -
1d
Johnson AW.Kaska WC.Ostoja-Starzewski KA.Dixon DA. In Ylides and Imines of PhosphorusJohnson AW. Wiley; New York: 1993. p.403 -
1e
Molina P.Vilaplana MJ. Synthesis 1994, 1197 -
2a
Staudinger H.Meyer J. Helv. Chim. Acta 1919, 2: 635 -
2b
Gololobov YG.Zhmurova IN.Kasukhin LF. Tetrahedron 1981, 37: 437 -
2c
Gololobov Y.Kasukhin LF. Tetrahedron 1992, 48: 1353 - 3
Horner L.Oediger H. Liebigs Ann. Chem. 1959, 627: 142 -
4a
Alajarín M.López-Leonardo C.Llamas-Lorente P.Bautista D. Synthesis 2000, 2085 -
4b
Alajarín M.López-Leonardo C.Llamas-Lorente P. Tetrahedron Lett. 2001, 42: 605 -
4c
Alajarín M.López-Leonardo C.Llamas-Lorente P. Tetrahedron Lett. 2001, 42: 1041 -
4d
Alajarín M.López-Leonardo C.Llamas-Lorente P.Bautista D.Jones PG. Dalton Trans. 2003, 426 - 5
Sisler HH.Smith NL. J. Org. Chem. 1961, 26: 4733 - 6 The more polarizable, heavier element
P should show greater nucleophilicity, see:
Quin LD. A Guide to Organophosphorus Chemistry John Wiley and Sons; New York: 2000. p.129 - 7
Kato S.Goto M.Hattori R.Nishiwaki K.Mizuta M.Ishida M. Chem. Ber. 1985, 118: 1668 - 10 In solution, iminophosphoranes 2f-h exist
in the enol tautomeric form, forming intramolecular hydrogen-bonded six
membered ring (Scheme 5). This is clearly apparent from their NMR
spectra, where the characteristic signals of the P-CH=C(Ar)-OH
fragment are observed, and also by the absence of the carbonyl absorption
in their IR spectra. The enol OH structure is believed to be favoured
over the C-H form as result of the favourable intramolecular N˙˙˙H-O hydrogen
bond, see:
Steiner T. Angew. Chem. Int. Ed. 2002, 41: 48 - 11
Baechler RD.Blohm M.Rocco K. Tetrahedron Lett. 1988, 29: 5353 - 13
Hudson HR. In The Chemistry of Functional Groups. The Chemistry of Organophosphorus Compounds Vol. 1:Hartley FR.Patai S. John Wiley and Sons; Chichester: 1990. p.387 - 14
Lindner E.Khanfar M.Steimann M. Eur. J. Inorg. Chem. 2001, 2411 - 16
Wetzel TG.Dehnen S.Roesky PW. Angew. Chem. Int. Ed. 1999, 38: 1086
References
Typical Procedure for the Synthesis of Bromides 1: To a solution of 4-tolylaminodiphenylphosphane (0.3 g, 1.03 mmol) in dry Et2O (15 mL) was added benzyl bromide (0.25 g, 1.5 mmol). The mixture was stirred for 6 h under N2 atmosphere. The appearance of a white precipitate of 1j was observed, which was filtered, washed with Et2O (5 mL) and dried under reduced pressure. An analytically pure sample was obtained by recrystallization from CH2Cl2-Et2O (white prisms). Yield (0.37 g, 77%); mp 176-178 ºC. IR (nujol): 2758, 1515, 1437, 1386, 1116, 750, 698 cm-1. 1H NMR (400 MHz, CDCl3): δ = 2.15 (s, 3 H, CH3), 4.72 (d, 2 H, 2 J HP = 16.2 Hz, CH2P), 6.84 (d, 2 H, 3 J HH = 8.2 Hz, Harom), 6.91-6.93 (m, 4 H, Harom), 7.11 (t, 2 H, 2 J HH = 7.4 Hz, Harom), 7.22 (m, 1 H, Harom), 7.51-7.56 (m, 4 H, Harom), 7.63-7.74 (m, 6 H, Harom), 10.07 (d, 1 H, 2 J HH = 8.6 Hz, NH). 13C {1H} NMR (75 MHz, CDCl3): δ = 20.60 (CH3), 34.45 (d, 1 J CP = 61.6 Hz, CH2P), 118.87 (d, 1 J CP = 95.7 Hz, q, C i ), 120.17 (d, 3 J CP = 7.1 Hz, Carom), 127.00 (d, 2 J CP = 7.4 Hz, q, Carom), 128.37 (d, 5 J CP = 4.2 Hz, Carom), 128.78 (d, 4 J CP = 3.5 Hz, Carom), 129.71 (d, 3 J CP = 12.9 Hz, C m ), 129.73 (Carom), 131.01 (d, 3 J CP = 5.7 Hz, Carom), 132.96 (q, Carom), 133.57 (d, 2 J CP = 10.1 Hz, C o ), 134.93 (d, 4 J CP = 3.0 Hz, C p ), 135.63 (d, 2 J CP = 3.8 Hz, q, Carom). 31P {1H} NMR (121 MHz, CDCl3): δ = 35.36. MS (EI): m/z (rel. intensity) = 383 (4) [M+ + 1 - Br], 382 (29) [M+ - Br], 381 (100) [M+ - HBr], 183 (46). Anal. Calcd for C26H25BrNP: C, 67.54; H, 5.45; N, 3.03. Found: C, 67.62; H, 5.62; N, 3.21.
9Typical Procedure for the Synthesis of Iminophos-phoranes 2: To a suspension of 1j (0.3 g, 0.65 mmol) in dry C6H6 (20 mL) was added Et3N (0.08 g, 0.8 mmol). The mixture was stirred for 1 h under N2 atmosphere and the precipitate of Et3N〈HBr was filtered. The solvent from the filtrate was removed under vacuum and the residue was triturated with dry Et2O (10 mL). White crystalline 2j was isolated by filtration and dried under reduced pressure. An analytically pure sample was obtained by recrystallization from CH2Cl2-Et2O (white prisms). Yield (0.24 g, 97%); mp 138-140 ºC. IR(nujol): 1506, 1438, 1329, 1109, 1026, 910, 822 cm-1. 1H NMR (400 MHz, CDCl3): δ = 2.20 (s, 3 H, CH3), 3.91 (d, 2 H, 2 J HP = 14.2 Hz, CH2P), 6.67 (d, 2 H, 3 J HH = 8.1 Hz, Harom), 6.84-6.86 (m, 4 H, Harom), 7.08-7.15 (m, 3 H, Harom), 7.37-7.44 (m, 4H, Harom), 7.49-7.53 (m, 2H, Harom), 7.62-7.67 (m, 4H, Harom). 13C {1H} NMR (CDCl3, 100 MHz): δ 20.61 (CH3), 35.71 (d, 1 J CP = 64.7 Hz, CH2P), 122.81 (d, 3 J CP = 18.0 Hz, Carom), 126.84 (d, 5 J CP = 2.1 Hz, Carom), 128.13 (d, 4 J CP = 2.6 Hz, Carom), 128.40 (q, Carom), 128.66 (d, 3 J CP = 11.5 Hz, C m ), 129.43 (Carom), 130.57 (d, 3 J CP = 5.0 Hz, Carom), 130.67 (d, 1 J CP = 90.7 Hz, q, C i ), 131.91 (br s, C p ), 132.26 (d, 2 J CP = 8.9 Hz, C o ), 134.88 (d, 2 J CP = 10.27.4 Hz, q, Carom), 148.63 (d, 2 J CP = 2.9 Hz, q, Carom). 31P {1H} NMR (161 MHz, CDCl3): δ = 7.08. MS (EI): m/z (rel. intensity) = 382 (24) [M+ + 1], 381 (79) [M+], 380 (25) [M+ - 1), 290 (100). Anal. Calcd for C26H24NP: C, 81.87; H, 6.34; N, 3.67. Found: C, 81.75; H, 6.50; N, 3.75.
12Compound 6: Colorless prisms (from CH2Cl2-Et2O), mp 181-183 ºC. IR (nujol): 3390, 1515, 1439, 1182, 1121, 778, 721 cm- 1. 1H NMR (400 MHz, CDCl3): δ = 2.24 (s, 3 H, CH3), 3.76 (d, 2 H, 2 J HP = 13.2 Hz, CH2P), 4.18 (s, 2 H, CH2N), 6.60 (d, 2 H, 3 J HH = 8.5 Hz, Harom), 6.80 (dt, 1 H, 4 J HH = 1.7 Hz, 3 J HH = 7.7 Hz, Harom), 6.98 (d, 2 H, 3 J HH = 8.5 Hz, Harom), 7.05 (dd, 1 H, 4 J HH = 1.1 Hz, 3 J HH = 7.5 Hz, Harom), 7.16 (dt, 1 H, 4 J HH = 1.7 Hz, 3 J HH = 7.5 Hz, Harom), 7.32 (m, 1 H, Harom), 7.38-7.57 (m, 6 H, Harom), 7.62-7.74 (m, 4 H, Harom), NH proton obscured. 13C {1H} NMR (100 MHz, CDCl3): δ = 20.49 (CH3), 34.70 (d, 1 J CP = 65.8 Hz, CH2P), 47.47 (CH2N), 113.16 (Carom), 126.49 (q, Carom), 127.41 (d, J CP = 6.6 Hz, Carom), 127.42 (Carom), 128.65 (d, 3 J CP = 11.7 Hz, C m ), 129.71 (Carom), 130.15 (d, 3 J CP = 8.4 Hz, q, Carom), 130.34 (d, J CP = 2.6 Hz, Carom), 131.06 (d, J CP = 4.5 Hz, Carom), 131.37 (d, 2 J CP = 9.2 Hz, C o ), 132.02 (d, 4 J CP = 2.8 Hz, C p ), 132.24 (d, 1 J CP = 97.3 Hz, q, C i ), 138.46 (d, 2 J CP = 5.2 Hz, q, Carom), 146.22 (q, Carom). 31P {1H} NMR (161 MHz, CDCl3): δ = 30.74. Anal. Calcd for C27H26NOP: C, 78.81; H, 6.37; N, 3.40. Found: C, 78.62; H, 6.32; N, 3.23.
15Compound 8: Colorless prisms (from CHCl3-Et2O), mp 227-229 ºC. IR (nujol): 1437, 1182, 1099, 1029, 751, 693 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.49 (s, 3 H, CH3), 3.95 (d, 2 H, 2 J HP = 13.8 Hz, CH2P), 7.37-7.42 (m, 4 H, Harom), 7.44-7.48 (m, 2 H, Harom), 7.50-7.80 (m, 4 H, Harom). 13C {1H} NMR (100 MHz, CDCl3): δ = 19.89 (CH3), 38.30 (d, 1 J CP = 50.4 Hz, CH2P), 128.52 (d, 3 J CP = 12.4 Hz, C m ), 129.18 (m, q, Carom), 131.45 (C p ), 131.68 (d, 2 J CP = 9.9 Hz, C o ), 133.34 (d, 1 J CP = 76.6 Hz, q, C i ), 137.17 (m, q, Carom). 31P {1H} NMR (161 MHz, CDCl3): δ = 38.84. MS (FAB+): m/z (rel. intensity) = 812 (45) [M+ + 1].