Subscribe to RSS
DOI: 10.1055/s-2003-38742
Heck Reaction of Vinyl Bromides with Alkenes in the Presence of a Tetraphosphine/Palladium Catalyst
Publication History
Publication Date:
17 April 2003 (online)
Abstract
Through the use of [PdCl(C3H5)]2-cis,cis,cis-1,2,3,4-tetrakis(diphenylphosphinomethyl)cyclopentane as a catalyst, a range of vinyl bromides undergo Heck reaction with a wide variety of alkenes leading selectively to the corresponding 1,3-dienes in good yields. Furthermore, it can be used at low loading even for reactions of sterically hindered vinyl bromides.
Key words
catalysis - palladium - tetraphosphine - alkenes - vinyl bromides
- For reviews on the palladium-catalysed Heck reaction see:
-
1a
Heck RF. Palladium Reagents in Organic SynthesesKatritzky AR.Meth-Cohn O.Rees CW. Academic Press; London: 1985. p.2 -
1b
Heck RF. Vinyl Substitution with Organopalladium Intermediates, in Comprehensive Organic Synthesis Vol. 4:Trost BM.Fleming I. Pergamon; Oxford: 1991. -
1c
de Meijere A.Meyer F. Angew. Chem., Int. Ed. Engl. 1994, 33: 2379 -
1d
Malleron J.-L.Fiaud J.-C.Legros J.-Y. Handbook of Palladium-Catalysed Organic Reactions Academic Press; London: 1997. -
1e
Reetz MT. Transition Metal Catalysed ReactionsDavies SG.Murahashi S.-I. Blackwell Sci.; Oxford: 1999. -
1f
Beletskaya I.Cheprakov A. Chem. Rev. 2000, 100: 3009 -
1g
Withcombe N.Hii Mimi KK.Gibson S. Tetrahedron 2001, 57: 7449 -
1h
Littke A.Fu G. Angew. Chem. Int. Ed. 2002, 41: 4176 - For examples of Heck reactions with vinyl halides:
-
2a
Dieck H.Heck R. J. Org. Chem. 1975, 40: 1083 -
2b
Patel B.Heck R. J. Org. Chem. 1978, 43: 3898 -
2c
Patel B.Kao L.-C.Cortese N.Minkiewicz J.Heck R. J. Org. Chem. 1979, 44: 918 -
2d
Kao L.-C.Stakem G.Patel B.Heck R. J. Org. Chem. 1982, 47: 1267 -
2e
Fischetti W.Mak T.Stakem G.Kim J.-I.Rheingold A.Heck R. J. Org. Chem. 1983, 48: 948 -
2f
Mitsudo T.-A.Fischetti W.Heck R. J. Org. Chem. 1984, 49: 1640 -
2g
Jeffery T. Tetrahedron Lett. 1985, 26: 2667 -
2h
Larock R.Gong W. J. Org. Chem. 1989, 544: 2047 -
2i
Jeffery T. J. Chem. Soc., Chem. Commun. 1991, 324 -
2j
Lu X.Huang X.Ma S. Tetrahedron Lett. 1992, 33: 2535 -
2k
Jeffery T. Tetrahedron Lett. 1993, 34: 1133 -
2l
Zhang X.-P.Schlosser M. Tetrahedron Lett. 1993, 34: 1925 -
2m
Crisp G.Glink P. Tetrahedron 1994, 50: 2623 -
2n
Voigt K.von Zezschwitz P.Rosauer K.Lansky A.Adams A.Reiser O.de Meijere A. Eur. J. Org. Chem. 1998, 1521 - For recent examples of Heck reactions catalysed by palladacycles, see:
-
3a
Herrmann WA.Brossmer C.Öfele K.Reisinger C.Riermeier T.Beller M.Fisher H. Angew. Chem., Int. Ed. Engl. 1995, 34: 1844 -
3b
Herrmann WA.Brossmer C.Reisinger C.Riermeier T.Öfele K.Beller M. Chem. Eur. J. 1997, 3: 1357 -
3c
Ohff M.Ohff A.Boom M.Milstein D. J. Am. Chem. Soc. 1997, 119: 11687 -
3d
Albisson D.Bedford R.Scully PN. Tetrahedron Lett. 1998, 39: 9793 -
3e
Ohff M.Ohff A.Milstein D. Chem. Commun. 1999, 357 -
3f
Miyazaki F.Yamaguchi K.Shibasaki M. Tetrahedron Lett. 1999, 40: 7379 -
3g
Bergbreiter D.Osburn P.Liu Y.-S. J. Am. Chem. Soc. 1999, 121: 9531 -
3h
Gai X.Grigg R.Ramzan I.Sridharan V.Collard S.Muir J. Chem. Commun. 2000, 2053 -
3i
Gibson S.Foster D.Eastham D.Tooze R.Cole-Hamilton D. Chem. Commun. 2001, 779 -
3j
Iyer S.Jayanthi A. Tetrahedron Lett. 2001, 42: 7877 -
4a
Gruber A.Zim D.Ebeling G.Monteiro A.Dupont J. Org. Lett. 2000, 2: 1287 -
4b
Littke A.Fu G. J. Am. Chem. Soc. 2001, 123: 6989 - 5 For a review on the synthesis of
polypodal diphenyl-phosphine ligands, see:
Laurenti D.Santelli M. Org. Prep. Proc. Int. 1999, 31: 245 - 6
Laurenti D.Feuerstein M.Pèpe G.Doucet H.Santelli M. J. Org. Chem. 2001, 66: 1633 -
7a
Feuerstein M.Laurenti D.Bougeant C.Doucet H.Santelli M. Chem. Commun. 2001, 325 -
7b
Feuerstein M.Laurenti D.Doucet H.Santelli M. Synthesis 2001, 2320 -
8a
Feuerstein M.Doucet H.Santelli M. J. Org. Chem. 2001, 66: 5923 -
8b
Feuerstein M.Doucet H.Santelli M. Synlett 2001, 1980 -
8c
Feuerstein M.Doucet H.Santelli M. Tetrahedron Lett. 2002, 43: 2191 -
8d
Berthiol F.Feuerstein M.Doucet H.Santelli M. Tetrahedron Lett. 2002, 43: 5625 -
8e
Berthiol F.Doucet H.Santelli M. Tetrahedron Lett. 2003, 44: 1221
References
As a typical experiment, the reaction of β-bromostyrene (1.83 g, 10 mmol), n-butyl acrylate (2.56 g, 20 mmol) and K2CO3 (2.8 g, 20 mmol) at 130 °C during 20 h in anhydrous DMF (10 mL) in the presence of cis,cis,cis-1,2,3,4-tetrakis(diphenylphosphinomethyl) cyclopentane/[PdCl(C3H5)]2 complex (0.0001 mmol) under argon affords the corresponding adduct after extraction with dichloro-methane, evaporation and filtration on silica gel (pentane/diethyl ether: 1/1) in 66% (1.52 g) isolated yield. n-Butyl (E,E)-5-phenylpenta-2,4-dienoate, 1H NMR (300 MHz, CDCl3): δ = 7.45 (d, J = 7.4 Hz, 2 H, Ph), 7.45-7.25 (m, 4 H, Ph and =CH), 6.89 (m, 2 H, =CH), 5.98 (d, J = 15.3 Hz, 1 H, =CH), 4.15 (t, J = 6.6 Hz, 2 H, CH2), 1.65 (m, 2 H, CH2), 1.40 (m, 2 H, CH2), 0.94 (t, J = 7.4 Hz, 1 H, Me).
10
1H NMR (300 MHz,
CDCl3) of selected products: Entry 17: δ = 7.50-7.15
(m, 5 H, Ph), 6.75 (dd, J = 10.9,
15.7 Hz, 1 H, =CH), 6.43 (d, J = 15.7
Hz, 1 H, =CH), 6.19 (dd, J = 10.9, 15.1
Hz, 1 H, =CH), 5.82 (dt, J = 15.1,
7.0 Hz, 1 H, =CH), 1.50-1.15 (m, 12 H, 6 CH2),
1.15 (m, 2 H, CH2), 0.88 (t, J = 6.8
Hz, 3 H, CH3); Entry 24: δ = 7.40 (d, J = 7.7 Hz, 2 H, Ph), 7.29 (t, J = 7.2 Hz, 2 H, Ph), 7.17 (t, J = 7.2 Hz, 1 H, Ph), 6.74 (d, J = 16.2 Hz, 1 H, =CH),
6.47 (d, J = 16.2 Hz, 1 H, =CH),
5.86 (t, J = 8.3 Hz, 1 H, =CH),
2.51 (m, 2 H, CH2), 2.25 (m, 2 H, CH2), 1.70-1.40
(m, 8 H, 4 CH2); Entry 26:
δ = 7.32
(d, J = 15.9 Hz, 1 H, =CH)
5.93 (d, J = 15.9 Hz, 1 H, =CH),
5.36 (s, 1 H, =CH2), 5.33 (s, 1 H, =CH2),
4.15 (t,
J = 6.8 Hz,
2 H, CH2), 2.24 (q, J = 7.3
Hz, 2 H, CH2), 1.42 (m, 2 H, CH2), 1.65 (m,
2 H, CH2), 1.11 (t, J = 7.3
Hz, 3 H, CH3), 0.94 (t, J = 7.3
Hz, 3 H, CH3); Entry 29: δ = 7.34 (d,
J = 8.7 Hz, 2 H, Ar),
6.86 (d, J = 8.7 Hz, 2 H, Ar),
6.70 (d, J = 16.2 Hz, 1 H, =CH),
6.53 (d, J = 16.2 Hz, 1 H, =CH),
5.07 (s, 1 H, =CH2), 5.01 (s, 1 H, =CH2),
3.80 (s, 3 H, OMe), 2.34 (q, J = 7.3
Hz, 2 H, CH2), 1.15 (t, J = 7.3
Hz, 3 H, CH3); Entry 30: δ = 7.58 (d, J = 8.5 Hz, 2 H, Ar), 7.48 (d, J = 8.5 Hz, 2 H, Ar), 6.90 (d, J = 16.4 Hz, 1 H, =CH),
6.55 (d, J = 16.4 Hz, 1 H, =CH),
5.22 (s, 1 H, =CH2), 5.19 (s, 1 H, =CH2), 2.36
(q, J = 7.3 Hz, 2 H, CH2),
1.16 (t, J = 7.3 Hz, 3 H, CH3); Entry
32: δ = 8.52 (m, 2 H, Ar), 7.26 (m, 2 H, Ar),
6.99 (d,
J = 16.4
Hz, 1 H, =CH), 6.47 (d, J = 16.4
Hz, 1 H, =CH), 5.23 (s, 1 H, =CH2),
5.20 (s, 1 H, =CH2), 2.34 (q, J = 7.3
Hz, 2 H, CH2), 1.16 (t, J = 7.3
Hz, 3 H, CH3); Entry 33: δ = 7.54 (dd, J = 11.7, 15.2 Hz, 1 H, =CH),
5.97 (d, J = 11.7 Hz, 1 H, =CH),
5.75 (d, J = 15.2 Hz, 1 H, =CH),
4.15 (t, J = 6.8 Hz, 2 H, CH2),
1.88 (s, 3 H, CH3), 1.86 (s, 3 H, CH3), 1.65
(m, 2 H, CH2), 1.40 (m, 2 H, CH2), 0.94 (t, J = 7.3 Hz, 3 H, CH3); Entry
37: δ = 8.51 (m, 2 H, Ar), 7.15 (m, 2 H, Ar),
7.17 (dd, J = 11.0 Hz, 15.5
Hz, 1 H, =CH), 6.32 (d, J = 15.5
Hz, 1 H, =CH), 6.02 (d, J = 11.0
Hz, 1 H, =CH), 1.88 (s, 3 H, CH3), 1.87 (s,
3 H, CH3); Entry 38: δ = 7.86 (d, J = 15.5 Hz, 1 H, =CH),
5.77 (d, J = 15.5 Hz, 1 H, =CH),
4.15 (q, J = 6.8 Hz, 2 H, CH2),
1.95 (s, 3 H, CH3), 1.86 (s, 3 H, CH3), 1.78
(s, 3 H, CH3), 1.65 (m, 2 H, CH2), 1.40 (m,
2 H, CH2), 0.94 (t,
J = 7.3
Hz, 3 H, CH3); Entry 41: δ = 8.51 (m,
2 H, Ar), 7.48 (d, J = 15.9
Hz, 1 H, =CH), 7.25 (m, 2 H, Ar), 6.35 (d, J = 15.9 Hz, 1 H, = CH),
1.96 (s, 3 H, CH3), 1.88 (s, 6 H, 2 CH3); Entry
42: δ = 7.41 (d, J = 7.4
Hz, 2 H, Ph); 7.31 (t, J = 7.4 Hz,
2 H, Ph), 7.23 (t, J = 7.4 Hz,
1 H, Ph), 6.81 (d, J = 16.2 Hz,
1 H, =CH), 6.60 (d, J = 16.2
Hz, 1 H, =CH), 5.26 (s, 1 H, =CH2),
5.14 (s, 1 H, =CH2), 3.82 (t, J = 6.5
Hz, 2 H, CH2), 2.64 (t, J = 6.5
Hz, 2 H, CH2).