Subscribe to RSS
DOI: 10.1055/s-2003-38747
A Lewis Acid Mediated Stereoselective Removal of an Anomeric Urea Substituent
Publication History
Publication Date:
17 April 2003 (online)
Abstract
The first Lewis acid mediated stereoselective removal of an anomeric chiral urea group or an electron deficient nitrogen substituent is described here. The ability to remove this urea group which had served as a chiral auxiliary, along with stereoselective hydroboration-oxidation of the endocyclic olefin renders the pyranyl cycloadduct from hetero [4+2] cycloadditions of chiral allenamides a useful chiral template. This represents a new approach to synthesis of complex pyranyl heterocycles or C-glycoside derivatives.
Key words
Lewis acid - [4+2] cycloaddition - C-glycoside derivatives
- For reviews on allenes see:
-
2a
Saalfrank RW.Lurz CJ. In Houben-Weyl, Methoden der organischen ChemieKropf H.Schaumann E. Georg Thieme Verlag; Stuttgart: 1993. p.3093 -
2b
Schuster HE.Coppola GM. Allenes in Organic Synthesis John Wiley and Sons; New York: 1984. -
2c For documentations of earlier
allenamides, see:
Dickinson WB.Lang PC. Tetrahedron Lett. 1967, 8: 3035 -
2d
Corbel B.Paugam J.-P.Dreux M.Savignac P. Tetrahedron Lett. 1976, 17: 835 -
2e
Balasubramanian KK.Venugopalan B. Tetrahedron Lett. 1974, 15: 2643 -
2f
Overman LE.Marlowe CK.Clizbe LA. Tetrahedron Lett. 1979, 599 -
2g
Reisch J.Salehi-Artimani RA. J. Heterocycl. Chem. 1989, 26: 1803 - For recent chemistry using allenamides, see:
-
3a
Gaul C.Seebach D. Helv. Chim. Acta 2002, 85: 963 -
3b
Kozawa Y.Mori M. Tetrahedron Lett. 2002, 43: 1499 -
3c
Kozawa Y.Mori M. Tetrahedron Lett. 2001, 42: 4869 -
3d
Kinderman SS.van Maarseveen JH.Schoemaker HE.Hiemstra H.Rutjes FPT. Org. Lett. 2001, 3: 2045 -
3e
van Boxtel LJ.Korbe S.Noltemeyer M.de Meijere A. Eur. J. Org. Chem. 2001, 2283 -
3f
Grigg R.Köppen I.Rasparini M.Sridharan V. Chem. Commun. 2001, 964 -
3g
Gardiner M.Grigg R.Sridharan V.Vicker N. Tetrahedron Lett. 1998, 39: 435 -
3h
Grigg R.Sansano JM.Santhakumar V.Sridharan V.Thangavelanthum R.Thornton-Pett M.Wilson D. Tetrahedron 1997, 53: 11803 -
3i
Grigg R.Loganathan V.Sridharan V.Stevenson P.Sukirthalingam S.Worakun T. Tetrahedron 1996, 52: 11479 -
3j
Griggs R.Sansano JM. Tetrahedron 1996, 52: 13441 -
3k
Grigg R.Sridharan V.Xu L.-H. J. Chem. Soc., Chem. Commun. 1995, 1903 -
3l
Kimura M.Horino Y.Wakamiya Y.Okajima T.Tamaru Y. J. Am. Chem. Soc. 1997, 119: 10869 -
3m
Kimura M.Wakamiya Y.Horino Y.Tamaru Y. Tetrahedron Lett. 1997, 38: 3963 -
3n
Horino Y.Kimura M.Wakamiya Y.Okajima T.Tamaru Y. Angew. Chem. Int. Ed. 1999, 38: 121 -
3o
Noguchi M.Okada H.Wantanabe M.Okuda K.Nakamura O. Tetrahedron 1996, 52: 6581 -
3p
Gericke R.Lues I. Tetrahedron Lett. 1992, 33: 1871 -
3q
Tanaka H.Kameyama Y.Sumida S.Yamada T.Tokumaru Y.Shiroi T.Sasaoka M.Taniguchi M.Torri S. Synlett 1991, 888 -
3r
Farina V.Kant J. Tetrahedron Lett. 1992, 33: 3563 -
3s
Farina V.Kant J. Tetrahedron Lett. 1992, 33: 3559 -
3t
Broggini G.Bruché L.Zecchi G. J. Chem. Soc., Perkin Trans. 1 1990, 533 -
3u
Nilsson BM.Hacksell U. J. Heterocycl. Chem. 1989, 26: 269 -
3v
Jones BCNM.Silverton JV.Simons C.Megati S.Nishimura H.Maeda Y.Mitsuya H.Zemlicka J. J. Med. Chem. 1995, 38: 1397 -
3w
Rádl S.Kovárová L. Collect. Czech. Chem. Commun. 1991, 56: 2413 -
3x For an account on living
polymerization of allenamides, see:
Takagi K.Tomita I.Endo T. Macromolecules 1998, 31: 6741 - For highly stereoselective [4+2] cycloaddition reactions of chiral allenamides, see:
-
4a
Wei L.-L.Hsung RP.Xiong H.Mulder JA.Nkansah NT. Org. Lett. 1999, 1: 2145 -
4b
Wei L.-L.Xiong H.Douglas CJ.Hsung RP. Tetrahedron Lett. 1999, 40: 6903 - For our other studies using chiral allenamides, see:
-
5a
Huang J.Xiong H.Hsung RP.Rameshkumar C.Mulder JA.Grebe TP. Org. Lett. 2002, 4: 2417 -
5b
Rameshkumar C.Xiong H.Tracey MR.Berry CR.Yao LJ.Hsung RP. J. Org. Chem. 2002, 67: 1339 -
5c
Xiong H.Hsung RP.Berry CR.Rameshkumar C. J. Am. Chem. Soc. 2001, 123: 7174 -
5d
Xiong H.Hsung RP.Wei L.-L.Berry CR.Mulder JA.Stockwell B. Org. Lett. 2000, 2: 2869 - For our synthesis of allenamides, see:
-
6a
Wei L.-L.Mulder JA.Xiong H.Zificsak CA.Douglas CJ.Hsung RP. Tetrahedron 2001, 57: 459 -
6b
Xiong, H.; Tracey, M. R.; Grebe, T. P.; Mulder, J. A.; Hsung, R. P. Org. Synth. 2002, in press.
- For reviews, see:
-
7a
Rappoport Z. The Chemistry of Enamines, In The Chemistry of Functional Groups John Wiley and Sons; New York: 1994. -
7b
Whitesell JK.Whitesell MA. Synthesis 1983, 517 -
7c
Hickmott PW. Tetrahedron 1982, 38: 1975 -
7d
Hickmott PW. Tetrahedron 1982, 38: 3363 -
7e
Lenz GR. Synthesis 1978, 489 -
7f For cycloadditions using
dienamides, see:
Campbell AL.Lenz GR. Synthesis 1987, 421 - For recent studies involving enamides, see:
-
8a
Fuchs JR.Funk RL. Org. Lett. 2001, 3: 3349 -
8b
Maeng J.-H.Funk RL. Org. Lett. 2000, 3: 1125 -
8c
Abbiati G.Clerici F.Gelmi ML.Gambini A.Pilati T. J. Org. Chem. 2001, 66: 6299 -
8d
Bach T.Schröder J.Brandl T.Hecht J.Harms K. Tetrahedron 1998, 54: 4507 -
8e For the only study of epoxidation
of achiral enamides, see:
Adam W.Reinhardt D.Reissig H.-U.Paulini K. Tetrahedron 1995, 51: 12257 ; and references cited therein -
8f See also:
Koseki Y.Kusano S.Ichi D.Yoshida K.Nagasaka T. Tetrahedron 2000, 56: 8855 -
9a
Postema MHD. Tetrahedron 1992, 48: 8545 -
9b
Postema MHD. C-Glycoside Synthesis CRC Press; Ann Arbor: 1995. -
9c
Levy DE.Tang C. The Chemistry of C-Glycosides 1st ed., Vol. 13: Pergamon Press; Oxford: 1995. - 10
Parker KA. Pure Appl. Chem. 1994, 66: 2135 - For an example see:
-
11a
Petó C.Batta G.Györgydeák Z.Sztaricskai F. J. Carbohydr. Chem. 1996, 15: 465 -
11b For some examples where
removal of an electron deficient anomeric nitrogen substituent led
to unraveling of the oxygen heterocycle:
Robert JJ.Swaminathan S.John MF.Shalini W.Brain FC.Mark MD. J. Am. Chem. Soc. 1993, 115: 9816 -
11c
Gilbert S.Chengzhi Z.Sergei G.Ronald S. Tetrahedron Lett. 1995, 36: 6387 -
11d
Katherine B.Eric T. J. Chem. Soc., Perkin Trans. 1 1998, 737 -
11e
David C.Xe-Sheng M. Tetrahedron Lett. 1997, 38: 8169 - 13
Hosomi A.Sakata Y.Sakurai H. Carbohydr. Res. 1987, 171: 223 -
14a
Larsen CH.Ridgeway BH.Shaw JT.Woerpel KA. J. Am. Chem. Soc. 1999, 121: 12208 -
14b
Shaw JT.Woerpel KA. J. Org. Chem. 1997, 62: 6706 -
14c
Romero JAC.Tabacco SA.Woerpel KA. J. Am. Chem. Soc. 2000, 122: 168 - 15
Matsutani H.Ichikawa S.Yaruva J.Kusumoto T.Hiyama T. J. Am. Chem. Soc. 1997, 119: 4541 - 17
Close WJ. J. Org. Chem. 1950, 15: 1131 -
18a
Woods RJ.Andrews CW.Bowen JP. J. Am. Chem. Soc. 1992, 114: 859 -
18b
Miljkovic M.Yeagley D.Deslongchamps P.Dory YL. J. Org. Chem. 1997, 62: 7597 - 19
Bezuidenhoudt BCB.Barend CB.Castle GH.Innes JE.Ley SV. Recl. Trav. Chim. Pays-Bas 1995, 114: 184 -
20a
Fujiwara K.Awakura D.Tsunashima M.Nakamura A.Honma T.Murai A. J. Org. Chem. 1999, 64: 2616 -
20b
Evans DA.Carter PH.Carreira EM.Charette AB.Prunet JA.Lautens M. J. Am. Chem. Soc. 1999, 121: 7540
References
A Recipient of 2001 Camille Dreyfus Teacher-Scholar Award. Author names are alphabetically ordered.
12The X-ray structure of pyran 8 is available in supplementary materials (Figure [1] ).
16For selected experimental procedures
and characterizations:
General Procedure
for Lewis Acid Mediated Allylations Using Pyran 8: To a solution
of 317.7 mg of pyran 8 in 65 mL of freshly
distilled CH2Cl2 at -78 °C
under N2 were added 503.9 mg of SnBr4 (1.5
equiv, 1.16 mmol) and 0.488 mL of allyltrimethylsilane (4 equiv,
3.06 mmol). The reaction was vigorously stirred for 12 h and allowed
to slowly warm to r.t. The solvent was removed under reduced pressure
and purification using silica gel column chromatography afforded
157.6 mg of 9a and 9b as
a mixture in addition to recovery of the Close’s auxiliary
in 70-90% recovery range when attempted. The ratio
of 9a:9b was found
to be 4:1 from the crude 1H NMR. Preparative thin
layer chromatography (1% Et2O in hexanes) was
useful to separate the major isomer 9a from
the minor isomer 9b.
9a (major). Rf = 0.30
(10% Et2O in hexanes). 1H
NMR (500 MHz, CDCl3): δ = 1.06 (d, J = 7.0 Hz,
3 H), 1.70 (m, 1 H), 1.78 (m, 1 H), 2.03 (m, 2 H), 2.18 (m, 1 H),
2.47 (ddd, J = 1.0,
10.0, 18.0 Hz, 2 H) 3.43 (ddd, J = 6.0,
7.0, 7.0 Hz, 1 H), 4.96 (dd, J = 1.0, 10.0 Hz, 1 H),
5.04 (dd, J = 2.0,
15.0 Hz, 1 H), 5.52 (dd, J = 4.0,
8.0 Hz, 1 H), 5.74 (m, 1 H), 7.27-8.31 (m, 7 H). 13C
NMR (125 MHz, C6D5CD3): δ = 137.9, 135.8,
134.2, 128.8, 128.5, 127.8, 125.4, 125.2, 125.1, 124.8, 124.2, 115.6,
76.8, 69.6, 36.8, 32.2, 27.4, 27.3, 17.8. IR (thin film): 3052 (m),
2932 (m), 1641 (m) cm-1. MS (EI): m/e (% relative
intensity) = 266.2 (25) [M+],
249.6 (100). Optical rotation was not pursued because samples of 9a still contained some 9b.
9b (minor). Rf = 0.30
(10% Et2O in hexanes). 1H
NMR (500 MHz, CDCl3): δ = 1.06 (d, J = 7.0 Hz,
3 H), 1.55 (m, 3 H), 1.74 (m, 1 H), 2.03 (m, 2 H), 2.65 (m, 1 H),
4.01 (dd, J = 4.0, 10.0
Hz, 1 H), 4.97 (d, J = 10.0 Hz, 1 H), 5.11
(d, J = 17.0 Hz,
1 H), 5.33 (dd, J = 1.0,
10.0 Hz, 1 H), 5.88 (m, 1 H), 7.07-8.25 (m, 7 H). 13C
NMR (125 MHz, C6D5CD3): δ = 136.0,
128.9, 128.8, 127.8, 127.5, 125.4, 123.8, 123.6, 115.7, 76.8, 68.1,
33.3, 32.6, 30.5, 27.6, 16.7 (3 signals are missing overlap with
solvent). IR (thin film): 3064 (m), 2945 (m), 1635 (m)cm-1.
MS (EI): m/e (% relative
intensity) = 284.2(50) [M + NH4]+,
264.1(10), 247.1(100); m/e calculated for C19H26NO:
284.2015. Found: 284.2015.
General
Procedure for Lewis Acid Mediated Allylations Using Pyran 20: To
a solution of pyran 20 (5.0 mg, 0.011 mmol)
in 1.0 mL of anhyd CH2Cl2 at -78 °C
were added 7.63 mg SnBr4 (1.5 equiv, 0.0174 mmol) and
7.50 µL of allyltrimethylsilane (4 equiv. 0.0464 mmol).
The mixture was warmed to r.t. and stirred at r.t. for 12 h before
it was quenched with sat. aq NH4Cl (2 mL). The resultant
mixture was extracted with CH2Cl2 (3 × 3
mL), and the combined extracts were dried over Na2SO4,
filtered, and concentrated under reduced pressure. Silica gel flash
chromatography (gradient eluent: 0-10% EtOAc in
hexanes) of the crude gave 2.32 mg (combined yield 70%)
of pyran 21a and 22b with
a 7:1 diastereomeric ratio.
Pyran 21a (major):
Rf = 0.30 (10% EtOAc
in hexanes). 1H NMR (500 MHz, CDCl3): δ = 0.99
(d, J = 7.0
Hz, 3 H), 1.36 (ddd, J = 6.0,
12.0, 18.0 Hz, 1 H), 1.75 (dd, J = 12.0,
22.0 Hz, 1 H), 1.86 (m, 1 H), 2.27 (ddd, J = 6.5,
14.0, 15.0 Hz, 1 H), 2.42 (ddd, J = 4.5,
11.0, 16.5 Hz, 1 H), 2.71 (d, J = 1.5 Hz,
1 H), 3.68 (ddd, J = 4.5,
7.0, 15.5 Hz, 1 H), 4.46 (ddd, J = 3.5,
8.5, 15.5 Hz, 1 H), 5.13 (ddd, J = 9.5,
15.5, 17.5 Hz, 2 H), 5.84 (d, J = 2.0
Hz, 1 H), 5.94 (m, 1 H), 7.08-8.20 (m, 7 H). 13C
NMR (75 MHz, CDCl3): δ = 134.9, 128.7,
127.5, 125.8, 125.4, 125.2, 122.8, 122.6, 116.7, 86.0, 80.6, 69.7, 39.0,
38.5, 33.5, 16.2 (missing 3 peaks). IR (thin film): 3432 (s), 3072
(w), 3063 (w), 2971 (s), 2962 (s), 2953 (s) cm-1. MS
(EI): m/e (% relative
intensity) = 282.2 (15) [M+], 125.1(100); m/e calcd
for C19H22O2: 282.1620. Found: 282.1618.
Pyran 21b (minor): Rf = 0.32
(10% EtOAc in hexanes). 1H NMR (500
MHz, CDCl3): δ = 0.98 (d, J = 7.0 Hz,
3 H), 1.33 (ddd, J = 11.0,
20.5, 22.5 Hz, 1 H), 1.64 (dd, J = 5.5,
15.5 Hz, 1 H), 2.28 (m, 3 H), 2.82 (s, 1 H), 4.05 (ddd, J = 10.0, 13.0,
22.5 Hz, 1 H), 4.36 (ddd, J = 5.5,
10.5, 16.0 Hz, 1 H), 5.22 (m, 2 H), 5.82 (d, J = 4.5
Hz, 1 H), 5.98 (m, 1 H), 7.30-8.20 (m, 7 H). MS (EI): m/e (% relative
intensity) = 282.2(15) [M+],
125.1(100); m/e calcd
for C19H22O2: 282.1620. Found:
282.1617.
Hydroboration Reactions: To
a solution of 9.0 mg of pyran 16 (0.0218
mmol) in 2.0 mL of anhyd THF at r.t. was added 0.25 mL of BH3〈THF
complex (2.5 equiv, 1 M solution in THF). The resultant mixture
was stirred for 1 h and warmed to 55 °C for 1
h, and then, the mixture was cooled to r.t. and excess 30% aq
H2O2 and 15% aq NaOH was added dropwise carefully.
The resultant mixture was warmed to 60 °C for
10 min and vigorously stirred at r.t. for 1 h. The mixture was extracted
with Et2O (2 × 5 mL) and EtOAc
(2 × 5 mL). The combined extracts were
dried over Na2SO4, filtered, and concentrated
under reduced pressure. Silica gel flash chromatography (50% EtOAc
in hexanes) of the crude provided 6.62 mg of the desired alcohol 20 (70% yield) as a colorless
oil.
Pyran 20: Rf = 0.35
(50% EtOAc in hexanes). [α]
d
20 =
-77.0
(c 0.35, CHCl3). 1H
NMR (500 MHz, CDCl3): δ = 0.68 (d, J = 7.0 Hz,
3 H), 0.94 (d, J = 6.5
Hz, 3 H), 2.01 (ddd, J = 3.5,
7.0, 10.0 Hz, 2 H), 2.25 (m, 1 H), 2.67 (s, 3 H), 3.72 (dq, J = 7.0, 8.5
Hz, 1 H), 4.02 (dd, J = 7.5,
16.0 Hz, 1 H), 4.84 (d, J = 8.0
Hz, 1 H), 5.04 (d, J = 9.0
Hz, 1 H), 5.63 (d, J = 2.0
Hz, 1 H), 7.20-8.41 (m, 12 H). 13C
NMR (125 MHz, CDCl3): δ = 162.5, 139.0,
134.9, 133.8, 131.7, 128.8, 128.5, 128.2, 127.5, 126.1, 125.7, 125.3,
125.0, 124.4, 86.3, 82.4, 67.3, 58.9, 57.1, 40.2, 32.6, 28.6, 15.1,
13.9 (missing 3 signals). IR (thin film): 3391 (m), 3029 (w), 2980
(w), 2930 (m), 2878 (m), 1684 (s), 1435 (m) cm-1.
MS (EI): m/e (% relative
intensity) = 430.3(5) [M+],
273.2(100); m/e calcd
for C27H30N2O3: 430.2256.
Ffound: 430.2234.
Pyran 22 [C6-epimer]:
Rf = 0.35 (50% EtOAc
in hexanes). 1H NMR (500 MHz, CDCl3): δ = 0.80
(d, J = 7.0
Hz, 3 H), 1.03 (d, J = 6.0
Hz, 3 H), 1.15 (ddd, J = 3.0,
5.0, 12.0 Hz, 1 H), 1.67 (dd, J = 12.0, 23.0 Hz, 1
H), 2.46 (m, 1 H), 2.81 (s, 3 H), 3.51 (ddd, J = 3.5,
5.0, 10.5 Hz, 1 H), 3.79 (dq, J = 6.5, 8.5
Hz, 1 H), 4.69 (d, J = 8.5
Hz, 1 H), 5.37 (d, J = 9.0
Hz, 1 H), 5.45 (d, J = 3.0
Hz, 1 H), 7.20-8.25 (m, 12 H). 13C
NMR (75 MHz, CDCl3): δ = 167.6, 136.9,
134.9, 133.2, 128.6, 128.5, 128.3, 127.9, 127.8, 127.4, 125.6, 125.3,
125.1, 122.8, 90.9, 80.1, 68.4, 60.7, 55.7, 35.0, 32.2, 29.6, 28.5, 16.0,
14.5 (missing 2 peaks). MS (EI): m/e (% relative intensity) = 430.3
(5) [M+], 273.2 (100); m/e calcd
for C27H30N2O3: 430.2256.
Found: 430.2232.
When substituents at C5 and C6 are trans in these pyranyl heterocycles, we observed strong NOE (see pyrans 21 and 22) between protons at C2 and C3 presumably because these two protons are not necessarily locked in a diaxial relationship unlike those in 20.