Int J Sports Med 2003; 24(4): 238-244
DOI: 10.1055/s-2003-39501
Physiology & Biochemistry
© Georg Thieme Verlag Stuttgart · New York

13C/31P NMR Studies on the Role of Glucose Transport/Phosphorylation in Human Glycogen Supercompensation

T.  B.  Price1 , D.  Laurent2, 3 , K.  F.  Petersen2
  • 1Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA
  • 2Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
  • 3Current address: Novartis Pharmaceutical Corp., Summit, NJ, USA
Further Information

Publication History

Accepted after revision: December 20, 2002

Publication Date:
04 June 2003 (online)

Abstract

This study measured muscle glycogen during a 7-day carbohydrate loading protocol. Twenty healthy subjects (12 male, 8 female) performed 1hr treadmill/toe-raise exercise immediately before a 3-day low carbohydrate (LoCHO) diet (20 % carbohydrate, 60 % fat, 20 % protein). On day 3 they repeated the exercise and began a 4-day high carbohydrate (HiCHO) diet (90 % carbohydrate, 2 % fat, 8 % protein). The order of administration of the diet was reversed in a subpopulation (n = 3). Interleaved natural abundance 13C/31P NMR spectra were obtained before and immediately after exercise, and each day during the controlled diets in order to determine concentrations of glycogen (GLY), glucose-6-phosphate (G6P), and muscle pH. Following exercise, muscle GLY and pH were reduced (p < 0.001) while muscle G6P was elevated (p ≤ 0.01). During the 3-day LoCHO diet, fasting concentrations of G6P were not different from resting levels. During the first 3 days of the HiCHO diet, resting G6P was elevated (p ≤ 0.05) compared to before the study. By the final day, muscle glycogen was 1.6-fold greater than before the protocol, while G6P had returned to baseline. Daily GLY and G6P were not affected by the order in which the diet was administered. We conclude that increased glucose transport/phosphorylation plays a role in muscle glycogen supercompensation.

References

  • 1 Alonso M, Lomako J, Lomako W, Whelan W. A new look at the biogenesis of glycogen.  FASEB J. 1995;  9 1126-1137
  • 2 Bak J, Pedersen O. Exercise-enhanced activation of glycogen synthase in human skeletal muscle.  Am J Physiol. 1990;  258 E957-E963
  • 3 Bergstrom J, Hermansen L, Hultman E, Saltin B. Diet, muscle glycogen, and physical performance.  Acta Physiol Scand. 1967;  71 140-150
  • 4 Bergstrom J, Hultman E. A study of the glycogen metabolism during exercise in man.  J Clin Lab Invest. 1967;  19 218-228
  • 5 Bergstrom J, Hultman E, Roch-Norlund A. Muscle glycogen synthetase in normal subjects.  Scand J Clin Lab Invest. 1972;  29 231-236
  • 6 Bloch G, Chase J, Avison M, Shulman R. In vivo 31P NMR measurement of glucose-6-phosphate in the rat muscle after exercise.  Mag Res Med. 1993;  30 347-350
  • 7 Bloch G, Chase J, Meyer D, Avison M, Shulman G, Shulman R. In vivo regulation of rat muscle glycogen resynthesis after intense exercise.  Am J Physiol. 1994;  266 E85-E91
  • 8 Brau L, Ferreira C, Nikolovski S, Raja G, Palmer T, Fournier P.       Regulation of glycogen synthase and phosphorylase during recovery from high-intensity exercise in the rat.  Biochem J. 1997;  322 303-308
  • 9 Chase J, Price T, Chen W, Perseghun G, Duleba A, Shulman G, Shulman R. Simultaneous determination of the time courses of (glycogen) and (G6P) during recovery from heavy exercise in humans. SMR second meeting 1994
  • 10 Chen W, Price T, Rothman D, Chase J, Bloch G, Shulman G, Shulman R. Determination of G-6-P and glycogen changes of human muscle following exercise by interleaved 31P and 13C NMR spectroscopy.  Soc Mag Res. 1994;  2 160
  • 11 Conlee R, Hickson R, Winder W, Hagberg J, Holloszy J. Regulation of glycogen resynthesis in muscles of rats following exercise.  Am J Physiol. 1978;  235 R145-R150
  • 12 Danforth W. Glycogen synthetase activity in skeletal muscle.  J Biol Chem. 1965;  240 588-593
  • 13 Embden G, Habs H. Ueber chemische and biologische Veraenderungen der Muskulatur nach oefters wiederholter faradischer Reizung. I Mitteilung.  Z Physiol Chem. 1927;  171 16-39
  • 14 Fogelholm G, Tikkanen H, Naveri H, Naveri L, Harkonen M. Carbohydrate loading in practice: high muscle glycogen concentration is not certain.  Br J Spt Med. 1991;  25 41-44
  • 15 Friedman J, Nuefer D, Dohm L. Regulation of glycogen resynthesis following exercise: dietary considerations.  Spt Med. 1991;  11 232-243
  • 16 Gillespie C, Edgerton R. The role of testosterone in exercise-induced glycogen supercompensation.  Horm Metab Res. 1970;  2 364-366
  • 17 Gorski J, Puch U, Kiczka K. Post-adrenaline glycogen recovery in the rat skeletal muscle.  Bull Acad Pol Sci Ser Sci Biol. 1976;  24 185-187
  • 18 Harris R, Hultman E, Nordesjo L. Glycogen, glycolytic intermediates and high energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest: Methods and variance of values.  Scand J Clin Lab Invest. 1974;  33 109-120
  • 19 Hermansen L, Hultman E, Saltin B. Muscle glycogen during prolonged severe exercise.  Acta Physiol Scand. 1967;  71 129-139
  • 20 Hultman E, Bergstrom J, Roch-Norlund A. Glycogen storage in human skeletal muscle.  Adv Exp Med Biol. 1971;  11 273-288
  • 21 Ivy J. Muscle glycogen synthesis before and after exercise.  Spt Med. 1991;  11 6-19
  • 22 Ivy J. Role of insulin during exercise-induced glycogenesis in muscle: Effect on cyclic AMP.  Am J Physiol. 1977;  223 E509-E513
  • 23 Katz A. Differential responses of glycogen synthase to ischaemia and ischaemic contraction in human skeletal muscle.  Exp Physiol. 1997;  82 203-211
  • 24 Kochan R, Lamb D, Lutz S, Perrill C, Reimann E, Schlender K. Glycogen synthase activation in human skeletal muscle: effects of diet and exercise.   Am J Physiol. 1979;  236 E660-E666
  • 25 Madsen K, Pedersen P, Rose P, Richter E. Carbohydrate supercompensation and muscle glycogen utilization during exhaustive running in highly trained athletes.  Eur J Appl Physiol. 1990;  61 467-472
  • 26 McCoy M, Proietto J, Hargreaves M. Skeletal muscle GLUT-4 and postexercise muscle glycogen storage in humans.  J Appl Physiol. 1996;  80 411-415
  • 27 Miller W, Sherman W, Dodd H, Ivy J. Influence of dietary carbohydrate on skeletal muscle glucose uptake.  Am J Clin Nutr. 1985;  41 526-532
  • 28 Nakatani A, Han D, Hansen P, Nolte L, Host H, Hickner R, Holloszy J. Effect of endurance exercise training on muscle glycogen supercompensation in rats.  J Appl Physiol. 1997;  82 711-715
  • 29 Naveri H, Rehunen S, Kuoppasalmi K, Tulikoura I, Harkonen M. Muscle metabolism during and after strenuous intermittent running.  Scand. J Clin Lab Invest. 1978;  38 329-336
  • 30 O’Doherty R, Bracy D, Granner D, Wasserman D. Transcription of the rat skeletal muscle hexokinase II gene is increased by acute exercise.  J Appl Physiol. 1996;  81 789-793
  • 31 Pan J, Hamm J, Rothman D, Shulman R. In vivo titration of phosphomonoesters by H-1 decoupled P-31 NMR in human skeletal muscle after exercise.   Soc Mag Res Med Abstr. 1989;  8 541
  • 32 Price T, Perseghin G, Duleba A, Chen W, Chase J, Rothman D, Shulman R, Shulman G. NMR studies of muscle glycogen synthesis in insulin-resistant offspring of parents with non-insulin dependent diabetes mellitus immedietely after glycogen-depleting exercise.  Proc Nat Acad Sci. 1996;  93 5329-5334
  • 33 Price T, Rothman D, Taylor R, Avison M, Shulman G, Shulman R. Human muscle glycogen resynthesis after exercise: insulin-dependent and -independent phases.  J Appl Physiol. 1994;  76 104-111
  • 34 Ren J, Marshall B, Mueckler M, McCaleb M, Amatruda J, Shulman G. Over-expression of GLUT-4 protein in muscle increases basal and insulin-stimulated whole body glucose disposal in conscious mice.  J Clin Invest. 1995;  95 429-432
  • 35 Roedde S, MacDougall J, Sutton J, Green H. Supercompensation of muscle glycogen in trained and untrained subjects.  Can J Appl Spt Sci. 1986;  11 42-46
  • 36 Rothman D, Magnussen I, Cline G, Gerard D, Kahn C, Shulman R, Shulman G. Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus.  Proc Nat Acad Sci. 1995;  92 983-987
  • 37 Rothman D, Shulman R, Shulman G. 31P NMR measurements of muscle glucose-6-phosphate: evidence for reduced insulin dependent muscle glucose transport or phosphorylation in non-insulin dependent diabetes.  J Clin Invest. 1992;  89 1069-1075
  • 38 Sherman W, Costill D, Fink W, Hagerman F, Armstrong L, Murray T. Effect of a 42.2-km footrace and subsequent rest or exercise on muscle glycogen and enzymes.  J Appl Physiol. 1983;  55 1219-1224
  • 39 Tarnopolsky M, Atkinson S, Phillips S, MacDougall J. Carbohydrate loading and metabolism during exercise in men and women.  J Appl Physiol. 1995;  78 1360-1368
  • 40 Taylor R, Price T, Katz L, Shulman R, Shulman G. Direct measurement of change in muscle glycogen concentration after a mixed meal in normal subjects.  Am J Physiol. 1993;  265 E224-E229
  • 41 Taylor R, Price T, Rothman D, Shulman R, Shulman G. Validation of 13C NMR measurement of human skeletal muscle glycogen by direct biochemical assay of needle biopsy samples.  Mag Res Med. 1992;  27 13-20
  • 42 Villar-Palasi C. Oligo- and polysaccharide inhibition of muscle transferase D phosphatase.  Ann. N Y Acad Sci. 1969;  719-730
  • 43 Viru A. Postexercise recovery period: carbohydrate and protein metabolism.  Scand J Med Sci Spt. 1996;  6 2-14
  • 44 Yan Z, Spencer M, Bechtel P, Katz A. Regulation of glycogen synthase in human muscle during isometric contraction and recovery.  Acta Physiol Scand. 1993;  147 77-83

T. B. Price, Ph. D.

Yale University School of Medicine · Department of Diagnostic Radiology

333 Cedar Street · New Haven, CT 06510 · USA ·

Phone: (+1) 203-785-7021

Fax: (+1) 203-785-6534

Email: thomas.price@yale.edu