Subscribe to RSS
DOI: 10.1055/s-2003-39882
Pyridazines. Part 35: [1] Traceless Solid Phase Synthesis of 4,5- and 5,6-Diaryl-3(2H)-pyridazinones
Publication History
Publication Date:
11 June 2003 (online)
Abstract
A new method for the traceless solid phase synthesis of 3(2H)-pyridazinones has been developed employing dihydropyran-functionalized resin. The procedure has permitted the preparation of several diarylpyridazinones through a Suzuki cross-coupling reaction and cleavage conditions that promoted a retro-ene fragmentation.
Key words
solid phase - pyridazinone - ene-adducts - palladium
For the previous paper in this series, see: Sotelo, E.; Raviña, E. Tetrahedron Lett., in press.
-
2a
Szostak W. Chem. Rev. 1997, 97: 349 -
2b
Thompson LA.Ellman JA. Chem. Rev. 1996, 96: 555 -
2c
Fruchtel JS.Jung G. Angew. Chem., Int. Ed. Engl. 1996, 35: 17 -
3a
Smith AL.Thompson CG.Leeson PD. Bioorg. Med. Chem. Lett. 1996, 6: 1483 -
3b
Smith AL.Stevenson GI.Swain CJ.Castro JL. Tetrahedron Lett. 1998, 39: 8317 -
3c
Guillier F.Orain D.Bradley M. Chem. Rev. 2000, 100: 2091 - 4
Frank H.Heinisch G. Pharmacologically Active Pyridazines. Part 2. In Progress in Medicinal Chemistry Vol. 29:Ellis GP.Luscombe DK. Elsevier; Amsterdam: 1992. p.141 -
5a
Goualt N.Cupif JF.Picaro S.Lecat A.David M. J. Pharm. Pharmacol. 2001, 7: 981 -
5b
Parrot I.Wermuth CG.Hibert M. Tetrahedron Lett. 1999, 40: 7975 - 6
Laguna R.Rodriguez-Liñares B.Cano E.Estévez I.Raviña E.Sotelo E. Chem. Pharm. Bull. 1997, 45: 1151 - 7
Sotelo E.Fraiz N.Yañez M.Laguna R.Cano E.Brea J.Raviña E. Bioorg. Med. Chem. Lett. 2002, 12: 1575 - 8
Sotelo E.Fraiz N.Yañez M.Terrades V.Laguna R.Cano E.Raviña E. Bioorg. Med. Chem. 2002, 10: 2873 -
9a
Estévez I.Coelho A.Raviña E. Synthesis 1999, 9: 1666 -
9b
Coelho A.Sotelo E.Estévez I.Raviña E. Synthesis 2001, 6: 871 -
10a
RŽkyek O.Maes BUW.Jonkers THM.Lemière GLF.Dommisse RA. Tetrahedron 2001, 57: 10009 -
10b
Komrlj J.Maes BUW.Lemière GLF.Haemers A. Synlett 2000, 11: 1581 - 11
de Leval X.Delarge J.Somers F.Tullio PD.Henrotin Y.Pirotte B.Dogné JM. Curr. Med. Chem. 2000, 7: 1041 - 13
Coelho A.Raviña E.Sotelo E. Synlett 2002, 12: 6062 - 14
Ripoll J.Vallé Y. Synthesis 1993, 659 -
16a
Miyara N.Yanagi T.Suzuki A. Synth Commun. 1981, 11: 513 -
16b
Tsuji J. Palladium Reagents and Catalysts Wiley; Chichester: 1995.
References
For the previous paper in this series, see: Sotelo, E.; Raviña, E. Tetrahedron Lett., in press.
12Selected physical and spectroscopic
data of representative compounds 2. Compound 2a: Yield: 89%, mp 237-238 °C. IR
(KBr): 3100, 1680 cm-1. 1H
NMR (300 MHz, CDCl3):
δ = 7.55-7.47
(m, 5 H, Ph), 7.40 (s, 1 H, CH), 5.58 (d, J = 8.1 Hz,
2 H, CH2), 4.74 (t, J = 8.1
Hz, 1 H, OH). Compound 2b: Yield: 70%,
mp 113-114 °C. IR (KBr): 3400, 2960, 1670 cm-1. 1H
NMR (300 MHz, DMSO-d
6): 8.19
(s, 1 H, CH), 6.97 (t, J = 7.6
Hz, 1 H, OH), 5.34 (d, J = 7.6
Hz, 2 H, CH2).
General Procedure for the Preparation of Immobilized Pyridazinones 3: The amount of 300 mg of Ellman’s resin (Aldrich, 0.420 mmol) was loaded into a reactor on a PLS 6 × 4 organic synthesizer (Advanced ChemTech) and treated with 2 (1.26 mmol), PPTS (0.63 mmol) and dichloroethane (4 mL). The mixture was heated at 70 °C during 12 h, drained, washed sequentially with dichloroethane (3 × 5 mL), CH2Cl2 (3 × 5 mL), DMF (3 × 5 mL), CH2Cl2 (3 × 5 mL), MeOH (3 × 5 mL), Et2O (3 × 5 mL) and dried in a vacuum dessicator.
17General Procedure for Suzuki Arylation of Immobilized Halopyridazinones 3: The amount of 100 mg of pyridazinone-derivatized support 3 (0.120 mmol) was loaded into a reactor on a PLS 6 × 4 organic synthesizer (Advanced ChemTech) and treated with the appropriate boronic acid (0.300 mmol for 1a and 0.600 mmol for 1b,c), Pd(PPh3)4 (0.05 equiv), 2 M Na2CO3 (0.7 mL) and DME (3 mL). The mixture was heated at 70 °C during 12 h, drained, washed sequentially with DME (3 × 5 mL), DME/H2O (3 × 5 mL), 0.2 N HCl (3 × 5 mL), EtOAc (3 × 5 mL), MeOH (3 × 5 mL), Et2O (3 × 5 mL) and dried in a vacuum dessicator.
18General Procedure for Cleveage of 4,5- and 5,6-Diarylpyridazinones Form Solid Support: The above resin (75 mg) was treated with 20% TFA in CH2Cl2 (2 mL) for 15 min. After filtration and washing with CH2Cl2 the combined filtrates were heated at 50 °C for 12 h, concentrated to give a residue wich was re-dissolved in a 1:1 mixture of CH3CN-H2O. The solvent was then removed under presure to give pyridazinones 6 and 7.
19Selected physical and spectroscopic data of compounds 6 and 7: Compound 6a: Mp 135-136 °C. IR (KBr): 3100-2600, 1642 cm-1. 1H NMR (300 MHz, DMSO-d 6): δ = 13.05 (br s, 1 H, NH), 7.74 (s, 1 H, CH), 7.04-6.92 (m, 10 H, Ph). Compound 6b: Mp 147-149 °C. IR (KBr): 3100-2600, 1639 cm-1. 1H NMR (300 MHz, DMSO-d 6): δ = 13.16 (br s, 1 H, NH), 7.90 (s, 1 H, CH), 7.52-7.00 (m, 8 H, Ph), 2.24 (s, 6 H, 2 × CH3). Compound 7a: Mp178-180 °C. IR (KBr): 3100-2600, 1668, 1589 cm-1. 1H NMR (300 MHz, DMSO-d 6): δ = 11.58 (br s, 1 H, NH), 7.38-7.20 (m, 10 H, Ph), 7.01 (s, 1 H, CH). Compound 7b: Mp 198-200 °C. IR (KBr): 3100-2600, 1642 cm-1. 1H NMR (300 MHz, DMSO-d 6): δ = 11.40 (br s, 1 H, NH), 7.41-7.29 (m, 5 H, Ph), 7.18 (d, J = 8.0, 2 H, phenyl), 7.07 (d, J = 8.0, 2 H, phenyl), 7.01 (s, 1 H, CH), 2.33 (s, 3 H, CH3).
20HPLC analyses were performed using a 5 µm 4.6 × 150 mm reverse phase column (70% acetonitrile/30% H2O) over 40 min, flow rate 0.5 mL/min.