Int J Sports Med 2003; 24(5): 332-336
DOI: 10.1055/s-2003-40701
Physiology & Biochemistry
© Georg Thieme Verlag Stuttgart · New York

Use of Heart Rate to Predict Energy Expenditure from Low to High Activity Levels

H.  K.  Hiilloskorpi1 , M.  E.  Pasanen1 , M.  G.  Fogelholm1 , R.  M.  Laukkanen1, 2 , A.  T.  Mänttäri3
  • 1UKK Institute for Health Promotion and Research, Tampere, Finland
  • 2Polar Electro Oy, Kempele, Finland
  • 3Tampere Research Center of Sports Medicine, Tampere, Finland
Further Information

Publication History

January 6, 2003

Publication Date:
17 July 2003 (online)

Abstract

This study evaluated the ability to use the relationship between heart rate (HR) and oxygen uptake (V˙O2) to estimate energy expenditure (EE) from low to high physical activity with different HR-based prediction equations. General prediction equations were established based on the individual relations between HR and EE. Possibilities to improve the EE estimation with using alternatives for respective HR were also assessed. The alternatives were % of HR reserve: 100 × [(activity HR - resting HR)/(maximal HR - resting HR)], (HRR), and the difference between activity HR and resting HR (activity HR - resting HR), (HRnet). Forty-two men (age mean 36.5 [sd 7.6] y, BMI 24.5 [2.4] kg × m-2, V˙O2max 45.2 [6.5]) kg × ml × min-1 and 47 women (mean age 37.5 [9.5], BMI 23.3 [3.4], V˙O2max 36.3 [5.4]) performed an exercise test consisting of physically low-activity tasks and a maximal treadmill uphill walking test. Respiratory gases were obtained from indirect calorimetry. HR was registered by electrocardiography and EE was calculated from (V˙O2) and carbon dioxide (V˙CO2) production. Generalised linear models with random effects were used for the prediction of EE. EE values of the tests (one value at each intensity level) were predicted in separate models by the respective HR, HRR or HRnet values. The other predictors used in all models were body weight, sex and the intensity of exercise. The standard error of estimate (SEE) was 1.41 kcal × min-1 (5.89 kJ) in the model with HR variable as a predictor, 1.01 kcal × min-1 (4.22 kJ) with HRR variable, and 1.08 (4.51 kJ) with HRnet variable. The results show that the prediction of EE is more accurate if HRR or HRnet are used in prediction equation instead of HR.

References

  • 1 Andrews R B. Net heart rate as a substitute for respiratory calorimetry.  Am J Clin Nutr. 1971;  24 1139-1147
  • 2 Ballor D L, Burke L M, Knudson D V, Olson J R, Montoye H J. Comparison of three methods of estimating energy expenditure: caltrac, heart rate, and video analysis.  Res Q Exerc Sport. 1989;  4 362-368
  • 3 Ceesay S M, Prentice A M, Day K C, Murgatroyd P R, Goldberg G R, Scott W, Spurr G B. The use of heart-rate monitoring in the estimation of energy expenditure: a validation study using indirect whole-body calorimetry.  Br J Nutr. 1989;  61 175-186
  • 4 Diggle P J, Liang K Y, Zeger S L. Analysis of Longitudinal Data. Oxford; Clarendon Press 1994
  • 5 Fogelholm M, Hiilloskorpi H, Laukkanen R, Oja P, Lichtenbelt W M, Westerterp K. Assesment of energy expenditure in overweight women.  Med Sci Sports Exerc. 1998;  30 1191-1197
  • 6 Hauswirth C, Bigard A X, Le C hevalier. The Cosmed K4 telemetry system as an accurate device for oxygen uptake measurements during exercise.  Int J Sports Med. 1997;  18 449-453
  • 7 Haymes E M. , Byrnes WC. Walking and running energy expenditure estimated by Caltrac and indirect calorimetry.  Med Sci Sports Exerc. 1993;  12 1365-1369
  • 8 Hiilloskorpi H, Fogelholm M, Laukkanen R, Pasanen M, Oja P, Mänttäri A, Natri A. Factors affecting the relation between heart rate and energy expenditure during exercise.  Int J Sports Med. 1999;  20 438-443
  • 9 Jackson A S, Blair S N, Mahar M T, Wier L T, Ross M, Stuteville JE. Prediction of functional aerobic capacity without exercise testing.  Med Sci Sports Exerc. 1990;  22 863-870
  • 10 Karvonen M J, Kentala E, Mustala O. The effects of training on heart rate.  Ann Med Exp Biol Fenn. 1957;  35 307-315
  • 11 Laukkanen R, Virtanen P. Heart rate monitors -state of art.  J Sports Sci. 1998;  16 3-7
  • 12 Li R, Deurenberg P, Hautvast J GAJ. A critical evaluation of heart rate monitoring to assess energy expenditure in individuals.  Am J Clin Nutr. 1993;  58 602-607
  • 13 Lovelady C A, Meredith C N, McCrory M A, Nommsen L A, Joseph L J, Dewey K G. Energy expenditure in lactating women: a comparison of doubly labeled water and heart-rate-monitoring methods.  Am J Clin Nutr. 1993;  57 512-518
  • 14 Luke A, Maki K C, Barkey N, Cooper R, McGee D. Simultaneous monitoring of heart rate and motion to assess energy expenditure.  Med Sci Sports Exerc. 1997;  29 144-148
  • 15 Maas S, Kok M L, Westra H G, Kemper H C. The validity of the use of heart rate in estimating oxygen consumption in static and in combined static/dynamic exercise.  Ergonomics.. 1989;  32 141-148
  • 16 McArdle W D, McArdle F I, Katch V L. Essentials of Exercise Physiology. Malvern; Lea & Febiger 1994
  • 17 Meijer G A, Westerterp K R, Kopter H, ten Hoor R. Assessment of energy expenditure by recording heart rate and body acceleration.  Med Sci Sports Exerc. 1989;  21 343-347
  • 18 Montoye H J, Washburn R. Estimation of energy expenditure by a portable accelometer.  Med Sci Sports Exerc. 1983;  15 403-407
  • 19 Spurr G B. , Prentice AM., Murgatroyd PR., Goldberg GR., Reina JC., Christmas NT. Energy expenditure from minute-by-minute heart-rate recording: comparison with indirect calorimetry.  Am Clin Nutr. 1988;  48 552-559
  • 20 Payne P R, Wheeler E F, Salvosa C B. Prediction of daily energy expenditure from average pulse rate.  Am J Clin Nutr. 1971;  24 1164-1170
  • 21 U.S. Department of Health and Human Services .Physical activity and health: a report of the surgeon general. Atlanta; U.S. Department of Health and Human Services 1996: 29-33
  • 22 Washburn R, Chin M K, Montoye H J. Accuracy of pedometer in walking and running.  Res Q Exerc Sport. 1980;  51 695-702
  • 23 Washburn R J, Montoye H J. The assessment of physical activity by questionnaire.  Am J Epidemiol. 1986;  123 563-576
  • 24 Westerterp K R, Brouns F, Saris W H, ten Hoor F. Comparison of doubly labeled water with respirometry at low- and high-activity levels.  J Appl Physiol. 1988;  65 53-56
  • 25 Weir J B. New methods for calculating metabolic rate with special reference to protein metabolism.  J Physiol. 1949;  109 1-9
  • 26 WHO (World Health Organization) .Energy and Protein Requirements. Report of a Joint FAO/WHO/UNU Expert Consulation. Technical Report Series 724. World Health Organization Geneva; 1985: 206

H. Hiilloskorpi, M.Sc.

UKK Institute

P.O.B. 30 · FIN-33501 Tampere · Finland ·

Phone: +358 3 2829 240

Fax: int +358 3 2829 200

Email: hannele.hiilloskorpi@uta.fi