Abstract
A set of pyrene-modified pyrimidine and purine nucleosides, consisting of 5-(1-pyrenyl)-2′-deoxyuridine (1 ), 5-(1-pyrenyl)-2′-deoxycytidine (2 ), 8-(1-pyrenyl)-2′-deoxyguanosine (3 ), and 8-(1-pyrenyl)-2′-deoxyadenosine (4 ), was prepared via palladium-catalyzed Suzuki-Miyaura-type cross-coupling reactions. The syntheses started from 1-pyrenylboronic acid (5 ) and the corresponding halogenated nucleoside precursors. They were performed without protection of the hydroxy functions of the 2′-deoxyribose moiety and the exocyclic amino functions of the nucleoside bases. Good yields could be obtained for the preparation of 1 and 3 , but not in case of 2 and 4 . Obviously, the latter compounds require a protecting group strategy. The absorption and steady-state fluorescence properties of the pyrene-modified nucleosides 1 -4 were characterized in MeCN and MeOH.
Key words
cross-coupling - electron transfer - nucleosides - palladium - fluorescence
References
For recent reviews or publications of the different research groups, see:
1a
Boon EM.
Barton JK.
Curr. Opin. Struct. Biol.
2002,
12:
320
1b
Berlin YA.
Burin AL.
Ratner MA.
Chem. Phys.
2002,
275:
61
1c
Giese B.
Curr. Opin. Chem. Biol.
2002,
6:
612
1d
Bixon M.
Jortner J.
J. Am. Chem. Soc.
2001,
123:
12556
1e
Lewis FD.
Wu Y.
Hayes RT.
Wasielewski MR.
Angew. Chem. Int. Ed.
2002,
41:
3485
1f
Davies WB.
Hess S.
Naydnova I.
Haselsberger R.
Ogrodnik A.
Newton MD.
Michel-Beyerle ME.
J. Am. Chem. Soc.
2002,
124:
2422
1g
Santhosh U.
Schuster GB.
J. Am. Chem. Soc.
2002,
124:
10986
1h
Shafirovich V.
Dourandin A.
Geacintov NE.
J. Phys. Chem. B
2001,
105:
8431
1i
Wan C.
Fiebig T.
Schiemann O.
Barton JK.
Zewail AH.
Proc. Natl. Acad. Sci. U.S.A.
2000,
97:
14052
2a
O’Neill P.
Fielden M.
Adv. Radiation Biol.
1993,
17:
53
2b
Burrows CJ.
Muller JG.
Chem. Rev.
1998,
98:
1109
2c
Wang D.
Kreutzer DA.
Essigmann JM.
Mutat. Res.
1998,
400:
99
2d
Kawanashi S.
Hiraku Y.
Oikawa S.
Mutat. Res.
2001,
488:
65
3a
Hartwich G.
Caruana DJ.
de Lumley-Woodyear T.
Wu Y.
Campbell CN.
Heller A.
J. Am. Chem. Soc.
1999,
121:
10803
3b
Boon EM.
Ceres D.
Drummond TG.
Hill MG.
Barton JK.
Nat. Biotechnol.
2000,
18:
1096
3c
Boon EM.
Salas JE.
Barton JK.
Nat. Biotechnol.
2002,
20:
282
4a
Mao C.
Sun W.
Shen Z.
Seeman NC.
Nature (London)
1999,
397:
144
4b
Fink HW.
Schönenberger C.
Nature (London)
1999,
398:
407
4c
Porath D.
Bezryadin A.
de Vries S.
Dekker C.
Nature (London)
2000,
403:
635
4d
Niemeyer CM.
Adler M.
Angew. Chem. Int. Ed.
2002,
41:
3779
5
Wagenknecht H.-A.
Angew. Chem. Int. Ed.
2003,
42:
2454
6a
Razskazovskii Y.
Swarts SG.
Falcone JM.
Taylor C.
Sevilla MD.
J. Phys. Chem. B
1997,
101:
1460
6b
Anderson RF.
Wright GA.
Phys. Chem. Chem. Phys.
1999,
1:
4827
6c
Debije MG.
Milano MT.
Bernhard WA.
Angew. Chem. Int. Ed.
1999,
38:
2752
6d
Messer A.
Carpenter K.
Forzley K.
Buchanan J.
Yang S.
Razskazovskii Y.
Cai Z.
Sevilla MD.
J. Phys. Chem. B
2000,
104:
1128
6e
Cai Z.
Gu Z.
Sevilla MD.
J. Phys. Chem. B
2000,
104:
10406
6f
Cai Z.
Sevilla MD.
J. Phys. Chem. B
2000,
104:
6942
6g
Li X.
Cai Z.
Sevilla MD.
J. Phys. Chem. B
2001,
105:
10115
6h
Cai Z.
Li X.
Sevilla MD.
J. Phys. Chem. B
2002,
106:
2755
7
Giese B.
Annu. Rev. Biochem.
2002,
71:
51
8a
Behrens C.
Burgdorf LT.
Schwögler A.
Carell T.
Angew. Chem. Int. Ed.
2002,
41:
1763
8b
Behrens C.
Ober M.
Carell T.
Eur. J. Org. Chem.
2002,
32891
9a
Lewis FD.
Liu X.
Wu Y.
Miller SE.
Wasielewski MR.
Letsinger RK.
Sanishvili R.
Joachimiak A.
Tereshko V.
Egli M.
J. Am. Chem. Soc.
1999,
121:
9905
9b
Lewis FD.
Liu X.
Miller SE.
Hayes RT.
Wasielewski MR.
J. Am. Chem. Soc.
2002,
124:
11280
10
Amann N.
Pandurski E.
Fiebig T.
Wagenknecht H.-A.
Chem.-Eur. J.
2002,
8:
4877
11a
Amann N.
Pandurski E.
Fiebig T.
Wagenknecht H.-A.
Angew. Chem. Int. Ed.
2002,
41:
2978
11b Raytchev, M.; Mayer, E.; Amann, N.; Wagenknecht, H.-A.; Fiebig, T. Unpublished results.
12
Netzel TL.
Zhao M.
Nafisi K.
Headrick J.
Sigman MS.
Eaton BE.
J. Am. Chem. Soc.
1995,
117:
9119
13
Kubota T.
Kano J.
Uno B.
Konse T.
Bull. Chem. Soc. Jpn.
1987,
60:
3865
14
Steenken S.
Telo JP.
Novais HM.
Candeias LP.
J. Am. Chem. Soc.
1992,
114:
4701
15
Fiebig T.
Wan C.
Zewail AH.
ChemPhysChem
2002,
3:
781
16
Steenken S.
Jovanovic SV.
J. Am. Chem. Soc.
1997,
119:
617
17a
O’Connor D.
Shafirovich VY.
Geacintov NE.
J. Phys. Chem.
1994,
98:
9831
17b
Shafirovich VY.
Courtney SH.
Ya N.
Geacintov NE.
J. Am. Chem. Soc.
1995,
117:
4920
18
Seidel CAM.
Schulz A.
Sauer MHM.
J. Phys. Chem.
1996,
100:
5541
19a
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
19b
Chemler SR.
Trauner D.
Danishefsky SJ.
Angew. Chem. Int. Ed.
2001,
40:
4544
20a
Vollmann K.
Müller CE.
Heterocycles
2002,
57:
871
20b
Hocek M.
Hockova D.
Stambasky J.
Collect. Czech. Chem. Commun.
2003,
68:
837
21a
Lakshman MK.
J. Organomet. Chem.
2002,
653:
234
21b
Hocek M.
Eur. J. Org. Chem.
2003,
245
21c
Agrofoglio LA.
Gillaizeau I.
Saito Y.
Chem. Rev.
2003,
103:
1875
22
Amann N.
Wagenknecht H.-A.
Synlett
2002,
687
23a
Suenaga H.
Nakashima K.
Mizuno T.
Takeuchi M.
Hamachi I.
Shinkai S.
J. Chem. Soc., Perkin Trans. 1
1998,
1263
23b
Beinhoff M.
Weigel W.
Jurczok M.
Rettig W.
Modrakowski C.
Brüdgam I.
Hartl H.
Schlüter AD.
Eur. J. Org. Chem.
2001,
3819
24
Gannett P.
Sura TP.
Synth. Commun.
1993,
23:
1611
25a
Ikehara M.
Uesugi S.
Kaneko M.
J. Chem. Soc., Chem. Commun.
1967,
17
25b
Ikehara M.
Uesugi S.
Kaneko M. In Nucleic Acid Chemistry
Townsend LB.
Tipson RS.
Wiley;
New York:
1978.
p.837-841
26
Steenken S.
Free Rad. Res. Commun.
1992,
16:
349
27
Murahashi S.-I.
J. Organomet. Chem.
2002,
653:
27
28
Schulhof JC.
Molko D.
Teoule R.
Tetrahedron Lett.
1987,
28:
51
29
Fiebig T.
Stock K.
Lochbrunner S.
Riedle E.
Chem. Phys. Lett.
2001,
345:
81
30
Manoharan M.
Tivel KL.
Zhao M.
Nafisi K.
Netzel TL.
J. Phys. Chem.
1995,
99:
17461
31 Pandurski, E.; Wagenknecht, H.-A.; Fiebig, T., unpublished results.