Planta Med 2003; 69(11): 1009-1012
DOI: 10.1055/s-2003-45147
Original Paper
Biochemistry and Molecular Biology
© Georg Thieme Verlag Stuttgart · New York

Transport of Parthenolide across Human Intestinal Cells (Caco-2)

Shabana I. Khan1 , Ehab A. Abourashed1 , 4 , Ikhlas A. Khan1 , 2 , Larry A. Walker1 , 3
  • 1National Center for Natural Products Research, The University of Mississippi, University, MS, USA
  • 2Department of Pharmacognosy, The University of Mississippi, University, MS, USA
  • 3Department of Pharmacology, The University of Mississippi, University, MS, USA
  • 4Present address: College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
Further Information

Publication History

Received: March 23, 2003

Accepted: August 2, 2003

Publication Date:
09 January 2004 (online)

Abstract

This study examined the intestinal epithelial membrane transport of the sesquiterpene lactone parthenolide, a bioactive compound present in the migraine prophylactic herb feverfew. The Caco-2 human colonic cell line was used as an in vitro model of the human intestinal mucosal barrier. The bidirectional transport (apical to basolateral and basolateral to apical) of parthenolide was investigated using Caco-2 monolayers grown on Transwell inserts. Quantitation of parthenolide was performed using high performance liquid chromatography (HPLC). Apical to basolateral and basolateral to apical permeability coefficients and percent transport were calculated and a potential bioavailability of parthenolide was determined. Sodium fluorescein was used as a marker for paracellular leakage. Parthenolide, at a concentration of 250 μM, demonstrated substantial linear transport across the monolayer. The transport parameters were not affected by the presence of MK-571, an inhibitor of multidrug resistance transporter P-glycoprotein (MRP). Upon comparison of the transport parameters of parthenolide with atenolol under identical conditions and the reported values for model compounds like mannitol and propranolol, it is concluded that parthenolide is effectively absorbed through the intestinal mucosa via a passive diffusion mechanism.

References

  • 1 Berry M I. Feverfew faces the future.  Pharmaceutical Journal. 1984;  232 611-4
  • 2 Awang D VC. Feverfew fever: A headache for the consumer.  Herbalgram. 1993;  29 34-6
  • 3 Abourashed E A, Khan I A. Determination of parthenolide in selected feverfew products by liquid chromatography.  Journal of AOAC International. 2000;  83 789-92
  • 4 Kwok B HB, Koh B, Ndubuisi M I, Elofsson M, Crews C M. The anti-inflammatory natural product parthenolide from the medicinal herb feverfew directly binds to and inhibits IκB kinase.  Chemistry and Biology. 2001;  8 759-66
  • 5 Piella-Smith T H, Liu X. Feverfew extracts and the sesquiterpene lactone parthenolide inhibit intercellular adhesion molecule-1 expression in human synovial fibroblasts.  Cellular Immunology. 2001;  209 89-96
  • 6 Li-Weber M, Giaisi M, Treiber M K, Krammer P H. The anti-inflammatory sesquiterpene lactone parthenolide suppresses IL-4 gene expression in peripheral blood T cells.  European Journal of Immunology. 2002;  32 3587-97
  • 7 Sheehan M, Wong H R, Hake P W, Malhotra V, O’Connor M, Zingarelli B. Parthenolide, an inhibitor of the nuclear factor-kB pathway, ameliorates cardiovascular derangement and outcome in endotoxin shock in rodents.  Molecular Pharmacology. 2002;  61 953-63
  • 8 Chong S, Dando S A, Morrison R A. Evaluation of Biocoat® intestinal epithelium differentiation environment (3-day cultured Caco-2 cells) as an absorption screening model with improved productivity.  Pharmaceutical Research. 1997;  14 1835-7
  • 9 Wu X, Whitfield L R, Stewart B H. Atorvastatin transport in the Caco-2 cell model: Contributions of P-glycoprotein and the proton monocarboxylic acid co-transporter.  Pharmaceutical Research. 2000;  17 209-15
  • 10 Gupta E, Luo F, Lallo A, Ramanathan S, Vyas V, Rubin E, Sinko P. The intestinal absorption of camptothecin, a highly lipophilic drug, across Caco-2 is mediated by active transporter(s).  Anticancer Research. 2000;  20 1013-6
  • 11 Saito H, Fukasawa Y, Otsubo Y, Yamada K, Sezaki H, Yamashita S. Carrier-mediated transport of macrolide antimicrobial agents across Caco-2 cell monolayers.  Pharmaceutical Research. 2000;  17 761-5
  • 12 Yamashita S, Furubayashi T, Kataoka M, Sakane T, Sezaki H, Tokuda H. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells.  European Journal of Pharmaceutical Sciences. 2000;  10 195-204
  • 13 Tanaka Y, Taki Y, Sakane T, Nadai T, Sezaki H, Yamashita S. Characterization of drug transport through tight-junctional pathway in Caco-2 monolayer: Comparison with isolated rat jejunum and colon.  Pharmaceutical Research. 1995;  12 523-8
  • 14 Rouquayrol M, Gaucher B, Roche D, Greiner J, Vierling P. Transepithelial transport of prodrugs of the HIV protease inhibitors saquinavir, indinavir, and nelfinavir across Caco-2 cell monolayers.  Pharmaceutical Research. 2002;  19 1704-12
  • 15 Kamuhabwa A R, Augustijns P, de Witte P A. In vitro transport and uptake of protohypericin and hypericin in the Caco-2 model.  International Journal of Pharmaceutics. 1999;  188 81-6
  • 16 Walgren R A, Lin J -T, Kinne R K-H, Walle T. Cellular uptake of dietary flavonoid quercetin 4′-β-glucoside by sodium-dependent glucose transporter SGLT1.  Journal of Pharmacology and Experimental Therapeutics. 2000;  294 837-43
  • 17 Walle U K, Galijatovic A, Walle T. Transport of the flavonoid chrysin and its conjugated metabolites by human intestinal cell line Caco-2.  Biochemical Pharmacology. 1999;  58 431-8
  • 18 Walgren R A, Walle U K, Walle T. Transport of quercetin and its glucosides across human intestinal epithelial Caco-2 cells.  Biochemical Pharmacology. 1998;  55 1721-7
  • 19 Artursson P, Karlsson J. Correlation between oral drug absorption in human and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells.  Biochemical and Biophysical Research Communication. 1991;  175 880-5
  • 20 Walle U K, French K L, Walgren R A, Walle T. Transport of genistein-7-glucoside by human intestinal Caco-2 cells: Potential role for MRP2.  Research Communication in Molecular Pathology and Pharmacology. 1999;  103 45-56
  • 21 Walgren R A, Karnaky J r. KJ, Lindenmayer GE, Walle T. Efflux of dietary flavonoid quercetin 4′-β-glucoside across human intestinal Caco-2 cell monolayers by apical multidrug resistance-associated protein-2.  Journal of Pharmacology and Experimental Therapeutics. 2000;  294 830-6

Shabana I. Khan

National Center for Natural Products Research

School of Pharmacy

University of Mississippi

University

MS 38677

USA

Phone: +1-662-915-1041

Fax: +1-662-915-7062

Email: skhan@olemiss.edu