Zusammenfassung
Ziel: Beurteilung des Einflusses verschiedener Jodkonzentrationen in intravenösen Kontrastmitteln
auf Leber- und Gefäßanreicherung während der arteriellen und portovenösen Bildphase
bei der 4-Kanal-Multidetektor-CT (MDCT). Material und Methode: 100 konsekutive Patienten, die zum dreiphasischen Abdomen-MDCT überwiesen worden
waren, wurden willkürlich in vier Gruppen unterschiedlicher Jodkonzentrationen eingeteilt
(200, 250, 300 oder 350 mg/ml). Ein 4-Kanal-MDCT wurde in der Nativphase, in der arteriellen
und portovenösen Phase durchgeführt (VolumeZoom, Siemens, Germany). Ein vorbestimmtes
Kontrastmittelvolumen von 150 ml wurde mit einer Geschwindigkeit von 3 ml/s mittels
eines automatischen Bolustracking-Systems injiziert (Care, Bolus, Siemens, Erlangen).
Leber- und Gefäßanreicherung wurden zeitabhänging gemessen und die Nativwerte subtrahiert,
um die mittlere arterielle und portovenöse (MHE) und die mittlere aortale (MAE) Anreicherung
für jede Gruppe zu berechnen. Eine mittlere Kontrastanreicherung von > 80 HU in der
Aorta and von > 40 HU in der Leber wurde als ausreichend angesehen. Ergebnisse: Alle Patientengruppen zeigten eine ausreichende Gefäßanreicherung während der arteriellen
Bildphase. Die MAE war mit 350 mg/ml (222 HU) und 300 mg/ml (213 HU) signifikant besser
als mit 250 mg (196 HU) und 200 mg/ml (169 HU), während die MHE keinen signikanten
Unterschied zwischen den beiden Gruppen (Streuung 16 - 25 HU) zeigte. Mit ansteigenden
Konzentrationen wies die portovenöse MHE eine vermehrte Anreicherung auf, die zwischen
den Gruppen signifikant war. Nur in den Patientengruppen, die höhere Konzentrationen
(350 mg/ml und 300 mg/ml) erhalten hatten, erreichte jeder Patient die Richtwerte
einer ausreichenden portovenösen MHE. In der Gruppe mit niedriger Konzentration lag
die Anreicherung bei 8 Patienten mit 200 mg/ml und bei 3 Patienten mit 250 mg/ml unterhalb
des Schwellenwertes. Diskussion: Eine Verminderung der Jodkonzentration auf 200 mg/ml ist nur für die vaskuläre aortale
und die hepatisch arterielle Anreicherung vertretbar. Die portovenöse Bildphase verlangt
weiterhin eine Konzentration von 300 mg/ml oder höher.
Abstract
Purpose: To evaluate the impact of different iodine concentrations of intravenous contrast
agent on hepatic and vascular enhancement during arterial and porto-venous phase imaging
using a 4-channel multi-detector row CT (MDCT). Material and Methods: One hundred consecutive patients referred for triphasic abdominal MDCT were randomly
assigned into four groups receiving different iodine concentration (200, 250, 300
or 350 mg/ml). Non-contrast, arterial, and porto-venous phase 4-channel MDCT imaging
was performed (VolumeZoom, Siemens, Germany). A fixed volume of 150 ml intravenous
contrast agent at a rate of 3 ml/s was injected using an automatic bolus-tracking
system (Care Bolus, Siemens, Erlangen). Hepatic and vascular enhancement values were
measured over time and non-contrast values were subtracted in order to compute arterial
and porto-venous mean hepatic (MHE) and mean aortic (MAE) enhancement for each group.
Mean change of enhancement > 80 HU for the aorta and > 40 HU for the liver during
porto-venous phase imaging was considered as sufficient enhancement. Results: All groups achieved sufficient vascular enhancement during arterial phase imaging;
MAE with 350 mg/ml (222 HU) and 300 mg/ml (213HU) was significantly better than with
250 mg (196HU) and 200 mg/ml (169 HU), whereas MHE showed no statistically significant
difference between the groups (range 16 - 25 HU). Porto-venous MHE showed increased
enhancement with larger concentrations, with significant differences among the groups.
Only the higher concentration groups (350 mg/ml und 300 mg/ml) fulfilled in every
individual the guidelines for sufficient porto-venous MHE. In the lower concentration
groups, 8 patients with 200 mg/ml and 3 patients with 250 mg/ml showed enhancement
values below the required minimum. Conclusion: A decrease in iodine contrast agent down to 200 mg/ml concentration is only tenable
for propose of vascular aortic and hepatic arterial enhancement, whereas hepatic porto-venous
phase imaging still requires concentrations at or above the level of 300 mg/ml.
Key words
Multi-detector row CT, MDCT - abdomen, CT - contrast media, CT - liver, CT - aorta,
CT
References
1
Baron R L, Oliver J H, Dodd G D. et al .
Hepatocellular carcinoma: evaluation with biphasic, contrast-enhanced, helical CT.
Radiology.
1996;
199 (2)
505-511
2
Hollett M D, Jeffrey R B, Nino-Murcia M. et al .
Dual-phase helical CT of the liver: value of arterial phase scans in the detection
of small (< or = 1.5 cm) malignant hepatic neoplasms.
American Journal of Roentgenology.
1995;
164 (4)
879-884
3
Freeny P C, Gardner J C, von Ingersleben G. et al .
Hepatic helical CT: effect of reduction of iodine dose of intravenous contrast material
on hepatic contrast enhancement.
Radiology.
1995;
197 (1)
89-93
4
Heiken J P, Brink J A, McClennan B L. et al .
Dynamic contrast-enhanced CT of the liver: comparison of contrast medium injection
rates and uniphasic and biphasic injection protocols.
Radiology.
1993;
187 (2)
327-331
5
Garcia P A, Bonaldi V M, Bret P M. et al .
Effect of rate of contrast medium injection on hepatic enhancement at CT.
Radiology.
1996;
199 (1)
185-189
6
Foley W D, Hoffmann R G, Quiroz F A. et al .
Hepatic helical CT: contrast material injection protocol.
Radiology.
1994;
192 (2)
367-371
7
Small W C, Nelson R C, Bernardino M E. et al .
Contrast-enhanced spiral CT of the liver: effect of different amounts and injection
rates of contrast material on early contrast enhancement.
American Journal of Roentgenology.
1994;
163 (1)
87-92
8
Kopka L, Rodenwaldt J, Fischer U. et al .
Dual-phase helical CT of the liver: effects of bolus tracking and different volumes
of contrast material.
Radiology.
1996;
201 (2)
321-326
9
Kim T, Murakami T, Takahashi S. et al .
Effects of injection rates of contrast material on arterial phase hepatic CT. Ajr.
American Journal of Roentgenology.
1998;
171 (2)
429-432
10
Brink J A, Heiken J P, Forman H P. et al .
Hepatic spiral CT: reduction of dose of intravenous contrast material.
Radiology.
1995;
197 (1)
83-88
11
Engeroff B, Kopka L, Harz C. et al .
[Impact of different iodine concentrations on abdominal enhancement in biphasic multislice
helical CT (MS-CT)].
Fortschr Röntgenstr.
2001;
173 (10)
938-941
12
Kopka L, Rogalla P, Hamm B.
[Multislice CT of the abdomen - current indications and future trends].
Fortschr Röntgenstr.
2002;
174 (3)
273-282
13
Schorn C, Obenauer S, Funke M. et al .
[Slice sensitivity profile and image pixel noise of multi-slice spiral CT in comparison
with single slice spiral CT].
Fortschr Röntgenstr.
1999;
171 (3)
219-225
14
Bonaldi V M, Bret P M, Reinhold C. et al .
Helical CT of the liver: value of an early hepatic arterial phase.
Radiology.
1995;
197 (2)
357-363
15
Zeman R K, Baron R L, Jeffrey R B. et al .
Helical body CT: evolution of scanning protocols.
American Journal of Roentgenology.
1998;
170 (6)
1427-1438
16
Frederick M G, McElaney B L, Singer A. et al .
Timing of parenchymal enhancement on dual-phase dynamic helical CT of the liver: how
long does the hepatic arterial phase predominate?.
American Journal of Roentgenology.
1996;
166 (6)
1305-1310
17
Miller F H, Butler R S, Hoff F L. et al .
Using triphasic helical CT to detect focal hepatic lesions in patients with neoplasms.
American Journal of Roentgenology.
1998;
171 (3)
643-649
18
Hanninen E L, Vogl T J, Felfe R. et al .
Detection of Focal Liver Lesions at Biphasic Spiral CT: Randomized Double-Blind Study
of the Effect of Iodine Concentration in Contrast Materials.
Radiology.
2000;
216 (2)
403-409
19
Kopka L, Funke M, Fischer U. et al .
Parenchymal liver enhancement with bolus-triggered helical CT: preliminary clinical
results.
Radiology.
1995;
195 (1)
282-284
20
Bae K, Heiken J, Brink J.
Aortic and hepatic peak enhancement at CT: effect of contrast medium injection rate
- pharmacokinetic analysis and experimental porcine model.
Radiology.
1998;
206 (2)
455-464
21
Tublin M E, Tessler F N, Cheng S L. et al .
Effect of injection rate of contrast medium on pancreatic and hepatic helical CT.
Radiology.
1999;
210 (1)
97-101
22
Bae K T, Heiken J P, Brink J A.
Aortic and hepatic contrast medium enhancement at CT. Part I. Prediction with a computer
model.
Radiology.
1998;
207 (3)
647-655
23
Kopka L, Funke M, Vosshenrich R. et al .
Helical CT of the liver: evaluation of injection flow rate, mode, and scan delay with
a reduced-volume contrast medium bolus.
Journal of Computer Assisted Tomography.
1995;
19 (3)
406-411
24
Kim S, Kim J H, Han J K. et al .
Prediction of optimal injection protocol for tumor detection in contrast-enhanced
dynamic hepatic CT using simulation of lesion-to-liver contrast difference.
Computerized Medical Imaging and Graphics: the Official Journal of the Computerized
Medical Imaging Society.
2000;
24 (5)
317-327
25
Garcia P, Genin G, Bret P M. et al .
Hepatic CT enhancement: effect of the rate and volume of contrast medium injection
in an animal model.
Abdominal Imaging.
1997;
24 (6)
597-603
26
Yamashita Y, Komohara Y, Takahashi M. et al .
Abdominal Helical CT: Evaluation of Optimal Doses of Intravenous Contrast Material
- A Prospective Randomized Study.
Radiology.
2000;
216 (3)
718-723
27
Kormano M, Partanen K, Soimakallio S. et al .
Dynamic contrast enhancement of the upper abdomen: effect of contrast medium and body
weight.
Investigative Radiology.
18 (4)
364-367
28
Heiken J P, Brink J A, McClennan B L. et al .
Dynamic incremental CT: effect of volume and concentration of contrast material and
patient weight on hepatic enhancement.
Radiology.
1995;
195 (2)
353-357
29
Hollett M D, Jorgensen M J, Jeffrey R B.
Quantitative evaluation of pancreatic enhancement during dual-phase helical CT.
Radiology.
1995;
195 (2)
359-361
30
Bluemke D A, Fishman E K, Anderson J H.
Effect of contrast concentration on abdominal enhancement in the rabbit: spiral computed
tomography evaluation.
Acad Radiol.
1995;
2 (3)
226-231
31
Baker M E, Beam C, Leder R. et al .
Contrast material for combined abdominal and pelvic CT: can cost be reduced by increasing
the concentration and decreasing the volume?.
American Journal of Roentgenology.
1993;
160 (3)
637-641
32
Kopecky K K, Buckwalter K A, Sokiranski R.
Multi-slice CT spirals past single-slice CT in diagnostic efficacy.
1999;
21 (4)
36-42
33
McCollough C H, Zink F E.
Performance evaluation of a multi-slice CT system.
Medical Physics.
1999;
26 (11)
2223-2230
34
Dinkel H P, Fieger M, Knupffer J. et al .
Optimizing liver contrast in helical liver CT: value of a real-time bolus-triggering
technique.
European Radiology.
1998;
8 (9)
1608-1612
Justus Roos, M.D.
Institut für diagnostische Radiologie, Universitätsspital Zürich
Rämistrasse 100
CH-8091 Zurich
Schweiz
Phone: +41-1/2 55 56 69
Fax: +41-1/2 55 44 43
Email: justus.roos@usz.ch