Horm Metab Res 2004; 36(3): 131-135
DOI: 10.1055/s-2004-814335
Original Basic
© Georg Thieme Verlag Stuttgart · New York

Effects of Orchidectomy and Testosterone Replacement on Mouse Pyrrolidone Carboxypeptidase Activity in the HPA Axis

M.  J.  García-López1 , J.  M.  Martínez-Martos1 , M.  D.  Mayas1 , M.  P.  Carrera1 , M.  J.  Ramírez-Expósito1
  • 1Unit of Physiology, Department of Health Sciences, Faculty of Experimental and Health Sciences, University of Jaén, Jaén, Spain
Further Information

Publication History

Received 2 June 2003

Accepted after revision 7 October 2003

Publication Date:
01 April 2004 (online)

Summary

Pyrrolidone carboxypeptidase, also known as pyroglutamyl aminopeptidase, removes pyroglutamyl terminal residues from biologically active peptides such as thyrotropin-releasing hormone. The aim of the present work was to study the influence of orchidectomy and testosterone replacement on soluble (pyrrolidone carboxypeptidase type I) and membrane-bound (pyrrolidone carboxypeptidase type II) activities in the hypothalamus-pituitary-adrenal axis. Forty male mice (Balb/C) were distributed into five groups: sham-operated controls, orchidectomized, and orchidectomized treated with increasing doses of testosterone in each group (3, 6 and 12 mg/kg). In the hypothalamus, orchidectomy increased pyrrolidone carboxypeptidase type I, whereas the highest dose of testosterone returned this activity to control levels. In the pituitary, neither pyrrolidone carboxypeptidase type I nor type II activities changed after orchidectomy, although both activities increased after administration of testosterone in both cases. On the other hand, orchidectomy increased pyrrolidone carboxypeptidase type I and type II activities in adrenal glands, while testosterone replacement returned it to control levels. These results suggest that testosterone differentially modulates pyrrolidone carboxypeptidase type I and type II activities, and therefore also their endogenous substrate regulation. Thus, the influence of sex hormones in the physiology of the HPA axis through the modulation of the Pyrrolidone carboxypeptidase type I and type II activities is of great importance on stress and neuropathology associated with HPA dysfunction

References

  • 1 McDonald J K, Barret A J. Mammalian Proteses. A glossary and Bibliography. Volume 2. Exopeptidases. Orlando; Academic Press 1986
  • 2 Sanderink G J, Artur Y, Siest G. Human aminopeptidases: A review of the literature.  J Clin Chem Clin Biochem. 1988;  26 795-807
  • 3 Martínez J M, Prieto I, Ramírez M J, Alba F, Ramírez M. Cholesterol and steroids action on aminopeptidases.  Biochem Soc Trans. 1997;  25 113S
  • 4 Martínez J M, Ramírez M J, Prieto I, Alba F, Ramírez M. Sex differences and in vitro effects of steroids on serum aminopeptidase activities.  Peptides. 1998;  19 1637-1640
  • 5 Canny B J, O’Farrell K A, Clarke I J, Tilbrook A J. The influence of sex and gonadectomy on the hypothalamo-pituitary-adrenal axis of the sheep.  J Endocrinol. 1999;  162 215-225
  • 6 Viau V. Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes.  J Neuroendocrinol. 2002;  14 506-513
  • 7 Bethea C L, Brown N A, Kohama S G. Steroid regulation of estrogen and progestin receptor messenger ribonucleic acid in monkey hypothalamus and pituitary.  Endocrinology. 1998;  137 4372-4383
  • 8 Herbison A E. Neurochemical identity of neurones expressing oestrogen and androgen receptors in sheep hypothalami.  J Reprod Fertil Suppl. 1995;  49 271-283
  • 9 Hirst J J, West N B, Brenner R M, Novy M J. Steroid hormone receptors in the adrenal glands of fetal and adult rhesus monkeys.  J Clin Endocrinol Metab. 1992;  75 308-314
  • 10 Madigou T, Tiffoche C, Lazannec G, Pelletier J, Thieulant M L. The sheep estrogen receptor: cloning and regulation of expression in the hypothalamo-pituitary axis.  Mol Cell Endocrinol. 1996;  121 53-163
  • 11 Handa R J, Nunley K M, Lorens S A, Lome J P, McGivera R F, Bollnow M R. Androgen regulation of adrenocortocotropin and corticosterone secretion in the male rat following novelty and foot shock stressors.  Physiol Behav. 1994;  55 17-124
  • 12 Francois M H, Nosten-Bertrand M, Roubertoux P L, Kottler M L, Degrelle H. Opponent strain effect on eliciting attacks in NZB mice: physiological correlates.  Physiol. Behav1990;  47 1181-1185
  • 13 Fujita M Q, Yasui T, Sato B, Uchida N, Uchida K, Shiratori O, Takeda K, Matsumoto K. Maintenance of androgen-, glucocorticoid- or estrogen-responsive growth in shionogi carcinoma 115 subline sustained in castrated mice with high dose of estrogen for 30 generation (3 years).  Jpn J Cancer Res. 1992;  83 995-1001
  • 14 Li W, Ayata M, Terada N, Taniguchi H, Matsumoto K. Effect of androgen pretreatment at adulthood on androgen-induced proliferative response of seminal vesicles in neonatally castrated mice.  J Steroid Biochem. 1989;  33 59-63
  • 15 Nyby J G, Simon N G. Nonaromatizable androgens may stimulate a male mouse reproductive behavior by binding estrogen receptors.  Physiol Behav. 1987;  39 147-151
  • 16 Thurman J D, Creasia D A, Trotter R W. Effects of testosterone on the prevention of T-2 toxin-induced adrenocortical necrosis in mice.  A J Vet Res. 1989;  50 942-944
  • 17 García M J, Martínez-Martos J M, Mayas M D, Ramírez M, Ramírez-Expósito M J. Influencia del estradiol sobre la actividad piroglutamato aminopeptidasa en la corteza frontal de ratones ovaridectomizados.  Rev Neurol. 2001;  33 425-427
  • 18 Schnebli H P, Phillipps M A, Barclayl R K. Isolation and characterization of an enkephalin-degrading aminopeptidase from rat brain.  Biochim Biophys Acta. 1979;  569 89-98
  • 19 Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Anal Biochem. 1976;  72 48-254
  • 20 Browne P, O’Cuinn G. An evaluation of the role of a pyroglutamate aminopeptidase, a post-proline cleaving enzyme and a post-proline dipeptidyl aminopeptidase, each purified from the soluble fraction of guinea-pig brain, in the degradation of thyroliberin in vitro. .  Eur J Biochem. 1983;  137 75-87
  • 21 Lauffart B, McDermott J R, Biggins J A, Gibson A M, Mantle D. Purification and characterisation of pyroglutamyl aminopeptidase from human cerebral cortex.  Biochem Soc. Trans1989;  17 207-208
  • 22 Mudge A W, Fellows R E. Bovine pituitary pyrrolidonecarboxylyl peptidase.  Endocrinology. 1973;  93 1428-1434
  • 23 Elmore M A, Griffiths E C, O’Connor B, O’Cuinn G. Further characterisation of the substrate specificity of TRH hydrolysing pyroglutamate aminopeptidase from guinea-pig brain.  Neuropeptides. 1990;  15 31-36
  • 24 Kelly J A, Slator G R, Tipton K F, Williams C H, Bauer K. Kinetic investigation of the specificity of porcine brain thyrotropin-releasing hormone-degrading ectoenzyme for thyrotropin-releasing hormone-like peptides.  J Biol Chem. 2000;  275 6746-16 751
  • 25 O’Connor B, O’Cuinn G. Localization of a narrow-specificity thyroliberin-hydrolysing pyroglutamate aminopeptidase in synaptosomal membranes of guinea-pig brain.  Eur J Biochem. 1984;  144 271-278
  • 26 Bauer K. Purification and characterization of the thyrotropin-releasing hormone-degrading ectoenzyme.  Eur J Biochem. 1994;  224 387-396
  • 27 Bauer K, Nowak P. Characterisation of a thyroliberin-degrading serum enzyme catalyzing the hydrolysis of thyroliberin at the pyroglutamyl-histidine bond.  Eur J Biochem. 1979;  99 239-246
  • 28 Bauer K, Nowak P, Kleinkauf H. Specificity of a serum peptidase hydrolysing thyroliberin at the pyroglutamyl-histidine bond.  Eur J Biochem. 1981;  118 73-176
  • 29 Taylor W L, Dixon J E. Characterisation of a pyroglutamate aminopeptidase from rat serum that degrades thyrotropin-releasing hormone.  J Biol Chem. 1978;  253 6934-6940
  • 30 Yamada M, Mori M. Thyrotropin-releasing hormone-degrading enzyme in human serum is classified as type II of pyroglutamyl aminopeptidase: influence of thyroid status.  Proc Soc Exp Biol Med. 1990;  194 346-351
  • 31 Akinsanya K O, Ghatei M A, Bloom S R. Gonadal steroids regulate rat anterior pituitary levels of TSH-releasing hormone- and pyroglutamyl-glutamyl-proline amide-like immunoreactivity.  Endocrinology. 1995;  136 734-740
  • 32 Pekary A E, Sattin A. Regulation of TRH and TRH-related peptides in rat brain by thyroid and steroid hormones.  Peptides. 2001;  22 1161-1173
  • 33 Wilber J F, Xu A H. The thyrotropin-releasing hormone gene: cloning, characterization, and transcriptional regulation in the central nervous system, heart, and testis.  Thyroid. 1998;  8 897-901
  • 34 Borges P P, Curty F H, Pazos-Moura C C, Moura E G. Effect of testosterone propionate treatment on thyrotropin secretion of young and old rats in vitro.  Life Sci. 1998;  62 2035-2043
  • 35 Pekary A E, Knoble M, García N H, Bhasin S, Hershman J M. Testosterone regulates the secretion of thyrotropin-releasing hormone (TRH) and TRH precursor in the rat hypothalamic-pituitary axis.  J Endocrinol. 1990;  125 263-270
  • 36 Rondeel J MM, Klootwijk W, Linkels E, van Haasteren G AC, de Greef W J, Visser T J. Regulation of thyrotropin-releasing hormone in the posterior pituitary.  Neuroendocrinology. 1995;  61 421-429
  • 37 Joseph-Bravo P, Uribe R M, Vargas M A, Pérez-Martínez L, Zoeller T, Charli J L. Multifactorial modulation of TRH metabolism.  Cell Mol Neurobiol. 1998;  18 231-247
  • 38 Montagne J J, Ladram A, Nicolas P, Bulant M. Cloning of thyrotropin-releasing hormone precursor and receptor in rat thymus, adrenal gland, and testis.  Endocrinology. 1999;  140 1054-1059
  • 39 Mitsuma T, Kayama M, Rhue N, Hirooka Y, Mori Y, Adachi K, Ping J, Nogimori T. Effect of anti-TRH-receptor antibody on corticosterone release from rat adrenal gland in vitro.  Endocr Regul. 1996;  30 129-131
  • 40 Malendowicz L K, Mlynarczyk W. Sex differences in adrenocortical structure and function. X. Lipid and corticosterone in the rat adrenal as affected by gonadectomy and testosterone replacement.  Endokrinologie. 1982;  79 292-300
  • 41 Weeke A, Weeke J. The 24-hour pattern of serum TSH in patients with endogenous depression.  Acta Psychiatrica Scandinavica. 1980;  62 69-74
  • 42 Loosen P T. Hormones of the hypothalamic-pituitary-thyroid axis: a psychoneuroendocrine perspective.  Pharmacopsychiatry. 1986;  19 401-415
  • 43 Duval F, Macher J P, Mokrani M C. Difference between evening and morning thyrotropin responses to protirelin in major depression.  Arch Gen Psychiatry. 1990;  47 443-448
  • 44 Marangell L B, George M S, Callahan A M, Ketter T A, Pazzaglia P J, L’Herrou T A, Leverich G S, Post R M. Effects of intrathecal thyrotropin-releasing hormone (protirelin) in refractory depressed patients.  Arch Gen Psychiatry. 1997;  54 241-252
  • 45 Peteranderl C, Antonijevic I A, Steiger A, Murck H, Held K, Frieboes R M, Uhr M, Schaaf L. Nocturnal secretion of TSH and ACTH in male patient with depression and healthy controls.  J Psychiatri Res. 2002;  36 189-196
  • 46 Heuer H, Schafer M K, O’Donnell D, Walker P, Bauer K. Expression of thyrotropin-releasing hormone receptor 2 (TRH-R2) in the central nervous system of rat.  J Comp Neurol. 2000;  428 319-336
  • 47 Dambrot S M. Thanks for the memories.  Biotechnol. 1992;  10 254

Dr. M. J. Ramírez-Expósito

Unit of Physiology, Department of Health Sciences, Faculty of Experimental and Health Sciences

University of Jaén · Paraje ”Las Lagunillas” s/n · 23071 Jaén · Spain

Phone: +34(953)012010

Fax: +34(953)012141

Email: mramirez@ujaen.es