Horm Metab Res 2004; 36(4): 210-214
DOI: 10.1055/s-2004-814449
Original Basic
© Georg Thieme Verlag Stuttgart · New York

Signals in the Activation of Opioid µ-Receptors by Loperamide to Enhance Glucose Uptake into Cultured C2C12 Cells

I.  M.  Liu1 , S.  S.  Liou1 , W.  C.  Chen2 , P.  F.  Chen3 , J.  T.  Cheng3
  • 1The Department of Pharmacy, Tajen Institute of Technology, Yen-Pou, Ping Tung Shien, Taiwan 90701, R.O.C.
  • 2The Department of Chinese Medicine, Jin-Ai Municipal Hospital, Taipei City, Taiwan 10501, R.O.C.
  • 3The Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan, R.O.C.
Further Information

Publication History

Received 12 August 2003

Accepted without Revision 10 November 2003

Publication Date:
28 April 2004 (online)

Abstract

In an attempt to understand the signal pathways of opioid µ-receptors for glucose metabolism, we used loperamide to investigate the glucose uptake into the myoblast C2C12 cells. Loperamide enhanced the uptake of radioactive deoxyglucose into C2C12 cells in a concentration-dependent manner that was abolished in cells pre-incubated with naloxone or naloxonazine at concentrations sufficient to block opioid µ-receptors. Pharmacological inhibition of phospholipase C (PLC) by U73122 resulted in a concentration-dependent decrease in loperamide-stimulated uptake of radioactive deoxyglucose into C2C12 cells. This inhibition of glucose uptake by U73122 was specific since the inactive congener, U73343, failed to modify loperamide-stimulated glucose uptake. Moreover, both chelerythrine and GF 109203X diminished the action of loperamide at concentrations sufficient to inhibit protein kinase C (PKC). The obtained data suggest that an activation of opioid µ-receptors in C2C12 cells by loperamide may increase glucose uptake via the PLC-PKC pathway.

References

  • 1 Chevlen E. Opioids: a review.  Current Pain & Headache Reports. 2003;  7 15-23
  • 2 Yaksh T L. Pharmacology and mechanisms of opioid analgesic activity.  Acta anaesthesiol Scand. 1997;  41 94-111
  • 3 Smith E M. Opioid peptides in immune cells.  Advances in Experimental Medicine & Biology. 2003;  521 51-68
  • 4 Curry D L, Li C H. Stimulation of insulin secretion by β-endorphin (1 - 27 and 1 - 31).  Life Sci. 1987;  40 2053-2058
  • 5 Locatelli A, Spotti D, Caviezel F. The regulation of insulin and glucagon secretion by opiates: a study with naloxone in healthy humans.  Acta Diabetol. 1985;  22 25-31
  • 6 Khawaja X Z, Green I C, Thorpe J R, Titheradge M A. The occurrence and receptor specificity of endogenous opioid peptides with pancreas and liver of the rat. Comparison with brain.  Biochem J. 1990;  267 233-240
  • 7 Cheng J T, Liu I M, Tzeng T F, Tsai C C, Lai T Y. Plasma glucose lowering effect of β-endorphin in streptozotocin-induced diabetic rats.  Horm Meta Res. 2002;  34 570-576
  • 8 Cheng J T, Liu I M, Tzeng T F, Chen W C, Hayakawa S, Yamamoto T. Release of β-endorphin by caffeic acid to lower plasma glucose in streptozotocin-induced diabetic rats.  Horm Metab Res. 2003;  35 251-258
  • 9 Liu I M, Chi T C, Chen Y C, Lu F H, Cheng J T. Activation of opioid µ-receptor by loperamide to lower plasma glucose in streptozotocin-induced diabetic rats.  Neurosci Lett. 1999;  265 183-186
  • 10 Tzeng T F, Liu I M, Lai T Y, Tsai C C, Chang W C, Cheng J T. Loperamide increases glucose utilization in streptozotocin-induced diabetic rats.  Clin Exp Pharmacol Physiol. 2003;  30 734-738
  • 11 Sheriff S, Fischer J E, Balasubramaniam A. Amylin inhibits insulin-stimulated glucose uptake in C2C12 muscle cell line through a cholera-toxin-sensitive mechanism.  Biochim Biophys Acta. 1992;  1136 219-222
  • 12 Liu I M, Tsai C C, Lai T Y, Cheng J T. Stimulatory effect of isoferulic acid on alpha1A-adrenoceptor to increase glucose uptake into cultured myoblast C2C12 cell of mice.  Auton Neurosci Basic & Clinic. 2001;  88 175-180
  • 13 Heel R C, Brogden R N, Speight T M, Avery G S. Loperamide: a review of its pharmacological properties and therapeutic efficacy in diarrhea.  Drugs. 1978;  15 33-52
  • 14 Crist G H, Xu B, Lanoue F, Lang C H. Tissue-specific effects of in vivo adenosine receptor blocked on glucose uptake in Zucker rats.  FASEB J. 1998;  12 1301-1308
  • 15 Martin W R. Opioid antagonists.  Pharmacol Rev. 1967;  19 463-521
  • 16 Ling G SF, Simantov R, Clark J A, Pasternak G W. Naloxonazine actions in vivo.  Eur J Pharmacol. 1986;  129 33-38
  • 17 Evans A A, Hughes S, Smith M E. Delta-opioid peptide receptors in muscles from obese diabetic and normal mice.  Peptides. 1995;  16 361-364
  • 18 Ishizuka T, Cooper D R, Hernandez H, Buckley D, Standaert M, Farese R V. Effects of insulin on diacylglycerol-protein kinase C signaling in rat diaphragm and soleus muscles and relationship to glucose transport.  Diabetes. 1990;  39 181-190
  • 19 Van Epps-Fung M, Gupta K, Hardy R W, Wells A. A role for phospholipase C activity in GLUT4-Mediated glucose transport.  Endocrinology. 1997;  138 5170-5175
  • 20 Wasserman D H, Zinman B. Exercise in individuals with IDDM.  Diabetes Care. 1994;  17 924-937
  • 21 Cheng J T, Liu I M, Chi T C, Tzeng T F, Lu F H, Chang C J. Plasma glucose lowering effect of tramadol in streptozotocin-induced diabetic rats.  Diabetes. 2001;  50 2815-2821
  • 22 Xie W, Samoriski G M, McLaughlin J P, Romoser V A, Smrcka A, Hinkle P M, Bidlack J M, Gross R A, Jiang H, Wu D. Genetic alteration of phospholipase C β3 expression modulates behavioral and cellular responses to mu opioids.  Proc Natl Acad Sci USA. 1999;  96 10 385-10 390
  • 23 Smallridge R C, Kiang J G, Gist I D, Fein H G, Gallowat R J. U-73 122, an aminosteroid phospholipase C antagonist, noncompetitively inhibits thyrotropin-releasing hormone effects in GH3 rat pituitary cell.  Endocrinology. 1992;  131 1883-1888
  • 24 Muto Y, Nagao T, Urushidani T. The putative phospholipase C inhibitor U73122 and its negative control, U73343, elicit unexpected effects on the rabbit parietal cell.  J Pharmac Exp Ther. 1997;  282 1379-1388
  • 25 Herbert J M, Augereau J M, Gleye J, Maffrand J P. Chelerythrine is a potent and specific inhibitor of protein kinase C.  Biochem Biophys Res Commun. 1990;  172 993-999
  • 26 Toullec D, Pianetti P, Coste H, Bellevergue P, Grand-Perret T, Ajakane M, Baudent V, Boissin P, Boursier E, Loriolle F, Duhamel L, Charon D, Kirilovsky J. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C.  J Biol Chem. 266;  1991 15 771-15 781
  • 27 Narita M, Ohnishi O, Nemoto M, Aoki T, Suzuki T. The involvement of phosphoinositide 3-kinase (PI3-Kinase) and phospholipase C gamma (PLC gamma) pathway in the morphine-induced supraspinal antinociception in the mouse.  Nihon Shinkei Seishin Yakurigaku Zasshi. 2001;  21 7-14
  • 28 Freye E, Latasch L. Development of opioid tolerance - molecular mechanisms and clinical consequences.  Anasthesiol Intensivmed Notfallmed Schmerzther. 2003;  38 14-26
  • 29 Neri L M, Borgatti P, Capitani S, Martelli A M. Protein kinase C isoforms and lipid second messengers: a critical nuclear partnership?.  Histol Histopath. 2002;  17 1311-1316
  • 30 Bandyopadhyay G, Standaert M L, Kikkawa U, Ono Y, Moscat J, Farese R V. Effects of transiently expressed atypical (zeta, lambda), conventional (alpha, beta) and novel (delta, epsilon) protein kinase C isoforms on insulin-stimulated translocation of epitope-tagged GLUT4 glucose transporters in rat adipocytes: specific interchangeable effects of protein kinases C-zeta and C-lambda.  Biochem J. 1999;  337 461-370

Prof. J.-T. Cheng

Department of Pharmacology · College of Medicine · National Cheng Kung University

Tainan City · Taiwan 70101 · R.O.C.

Phone: +886(6)2372706

Fax: +886(6)2386548 ·

Email: jtcheng@mail.ncku.edu.tw