Subscribe to RSS
DOI: 10.1055/s-2004-815813
Georg Thieme Verlag Stuttgart · New York
Transduktion primärer humaner T-Zellen mit einem CD44v7/8-spezifischen T-Zellrezeptor
Transduction of Human T-Cells Targeting CD44v7/8-Presenting CellsPublication History
Eingang Manuskript: 27. Oktober 2003
Akzeptiert: 16. Dezember 2003
Publication Date:
11 March 2004 (online)
Zusammenfassung
Fragestellung
Das variante CD44 v7/8-Epitop wird in ca. 70 % der invasiven Zervixkarzinome an der Zelloberfläche exprimiert und bietet sich somit als tumorspezifisches Antigen zur gentechnischen In-vitro-Manipulation der Erkennungsspezifität von T-Lymphozyten an. Dies wird durch die Klonierung und Transduktion des Gens für einen chimären T-Zell-Rezeptor (cTCR) erreicht, in welchem das Einzelketten-Fv-Fragment des CD44v7/8-spezifischen monoklonalen Antikörpers VFF 17 mit dem Gen der signaltransduzierenden Zeta-Kette des cTCR fusioniert wird. Die Schwierigkeit liegt darin, dass viele Gentransfermethoden sich nur begrenzt für primäre humane T-Zellen eignen. Ziel unserer Arbeit war somit primär die Etablierung der Methodik der Gentransduktion von primären humanen T-Zellen, um die Voraussetzung für die Expression des chimären T-Zell-Rezeptors in primäre humane T-Zellen zu schaffen und CD44v7/8-positive Tumorzellen zu erkennen.
Methodik
Das scFv(VFF 17)y:α:ζ-Fusions-Gen wurde zunächst mittels retroviraler Transduktion in die Galv-pseudotypische amphotrope Verpackungs-Zelllinie PG13 eingebracht. Primäre humane T-Zellen wurden durch Inkubation mit anti-CD3- und anti-CD28-Antikörpern aktiviert. Der retrovirale Gentransfer erfolgte auf mit rekombinantem Fibronektin beschichteten Platten.
Ergebnisse
Der retrovirale Gentransfer des scFv(VFF 17)y:α:ζ-Fusions-Gens in die Verpackungs-Zelllinie PG13 war erfolgreich. Die Expression des chimären Rezeptors konnte auf Transkriptionsebene in den transduzierten naiven T-Zellen nachgewiesen werden. Eine Oberflächenexpression des cTCR war nicht detektierbar.
Schlussfolgerung
Die Transduktion der primären humanen T-Zellen war erfolgreich. Zukünftige Untersuchungen werden zeigen, ob die nicht detektierbare Oberflächenexpression des chimären Rezeptors auf Proteinebene an einer Pseudotransduktion, nicht induzierten Translation oder an einer fehlerhaften Proteinfaltung lag.
Abstract
Purpose
The variant epitope CD44v7/8 is frequently expressed on cervical carcinoma. Therefore CD44v7/8 is a tumour-specific antigen and may play a role as a promising target for tumour-specific immunotherapy. Since many gene transfer methods in human T-cells are limited and problematical, the primary aim of our study was to develop a method for the transduction of T-lymphocytes with a CD44v7/8 target specifity.
Material and Methods
The genes coding for the single chain fragment scFv of the mononuclear antibody VFF 17 and of the ζ-chain of the TCR (T-cell receptor) complex were fused and inserted into a retroviral vector. We retrovirally transduced primary human T-cells. The gene transfer was tested by PCR (polymerase chain reaction). A FACS (fluorescent activated cell sorter) and a functionality test were performed to investigate the expression of the chimeric receptor of primary human T-cells.
Results
The mRNA expression of the chimeric receptor on the transduced human T-cells could be demonstrated. But on the protein level no expression of the scFv(VFF 17)y:α:ζ-fusion protein could be detected.
Discussion
Further studies will show whether the undetected expression of the surface protein on the transduced T-cells is due to a pseudotransduction, a not performed translation or an incorrect folding of the protein and consequently a flawed transportation of the protein to the surface.
Schlüsselwörter
CD44v7/8 - T-Zellen - Gentherapie - Zervixkarzinom
Key words
CD44v7/8 - T-cells - gene therapy - cervical carcinoma
Literatur
- 1 Dall P, Heider K H, Hekele A, von Minckwitz G, Kaufmann M, Ponta H, Herrlich P. Surface protein expression and messenger RNA-splicing analysis of CD44 in uterine cervical cancer and normal cervical epithelium. Cancer Res. 1994; 54 3337-3341
- 2 Hynes N E. Amplification and overexpression of the erbB-2 gene in human tumors: its involvement in tumor development significance as a prognostic factor, and potential target for cancer therapy. Semin Cancer Biol. 1993; 4 19-26
- 3 Restifo N P, Kawakami Y, Marincola F, Shamamian P, Taggarse A, Esquivel F, Rosenberg S A. Molecular mechanisms used by tumors to escape immune recognition: immunogenetherapy and the cell biology of major histocompatibility complex class I. J Immunother. 1993; 14 182-189
- 4 Branch P, Bicknell D C, Rowan A, Bodmer W F, Karran P. Immune surveillance in colorectal carcinoma. Nature Genet. 1995; 9 231-232
- 5 Chen L, Linsley P S, Hellström K E. Costimulation of T cells for tumor immunity. Immunol Today. 1993; 14 483-486
- 6 Arteaga C L, Hurd S D, Winner A R, Johnson M D, Fendley B M, Forbes J T. Anti-transforming-growth-factor (TGF)-β antibodies inhibit breast-cancer-cell-tumorigenicity and increase mouse-spleen natural-killer-cell activity. J Clin Invest. 1993; 92 2569-2576
- 7 Gross G, Waks T, Eshar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA. 1989; 86 10024-10028
- 8 Eshhar Z, Waks T, Bendavid A, Schindler D G. Functional expression of chimeric receptor genes in human T-cells. J Immunol Methods. 2001; 248 67-76
- 9 Herrmann I, Durst B, Röder G, Rein D T, Hampl M, Niederacher D, Bender H G, Dall P. Gentechnische Modifikation targetspezifischer zytotoxischer T-Zellen - ein additiver Therapieansatz bei gynäkologischen Tumoren. Geburtsh Frauenheilk. 2002; 62 856-861
- 10 Muro-Cacho C A, Samulski R J, Kaplan D. Gene transfer in human lymphocytes using a vector based on adeno-associated virus. J Immunother. 1992; 11 231-237
- 11 Burkholder J K, Decker J, Yang N S. Rapid transgene expression in lymphocyte and macrophage primary cultures after particle bombardment-mediated gene transfer. J Immunol Methods. 1993; 165 149-156
- 12 Woffendin C, Yang Z Y, Udaykumar, Xu L, Yang N S, Sheehy M J, Nabel G J. Nonviral and viral delivery of a human immunodeficiency virus protective gene into primary human T cells. Proc Natl Sci USA. 1994; 91 11581-11585
- 13 Dall P, Hekele A, Beckmann M W, Bender H G, Herrlich P, Ponta H. Efficient lysis of CD44v7/8-presenting target cells by genetically engineered cytotoxic T-lymphocytes. A model for immunogene therapy of cervical cancer. Gyn Oncol. 1997; 66 209-216
- 14 Miller D G, Miller A D. A family of retroviruses that utilize related phosphate transporters for cell entry. J Virol. 1994; 68 8270-8276
- 15 Wilson J M, Ping A J, Krauss J C, Mayo-Bond L, Rogers C E, Anderson D C, Todd R F. Correction of CD18-deficient lymphocytes by retrovirus-mediated gene transfer. Science. 1990; 248 1413-1416
- 16 Blaese R M, Culver K W, Miller A D, Carter C S, Fleisher T, Clerici M, Shearer G, Chang L, Chiang Y, Tolstoshev P, Greenblatt J J, Rosenberg S A, Klein H, Berger M, Mullen C A, Ramsey W J, Muul L, Morgan R A, Anderson W F. T-lymphocyte-directed gene therapy für ADA-SCID: initial trial results after 4 years; severe combined immunodeficiency therapy by adenosine-deaminase gene transfer using a retrovirus vector. Science. 1995; 270 475-480
- 17 Sullenger B A, Gallardo H F, Ungers G E, Gilboa E. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell. 1990; 63 601-608
- 18 Kain S R, Adams M, Kondepudi A, Yang T T, Ward W W, Kitts P. Green fluorescent protein as a reporter of gene expression and protein localization. Biotechniques. 1995; 19 650-655
- 19 Cheng L, Fu J, Tsukamoto A, Hawley R G. Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nat Biotechnol. 1996; 14 606-609
- 20 Marcucci F, Waller M, Kirchner H, Kramer P. Production of immune interferone by murine T-cell clones from long-term cultures. Nature. 1981; 291 79-81
- 21 Morgenstern J P, Land H. Advanced mammalian gene transfer: high retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acid Res. 1990; 18 3587-3596
- 22 Miller D G, Adam M A, Miller A D. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol. 1990; 10 4239-4242
- 23 Bordignon C, Notarangelo L D, Nobili N, Ferrari G, Casorati G, Panina P, Mazzolari E, Maggioni D, Rossi C, Servida P. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immundeficient patients. Science. 1995; 270 470-475
- 24 Asada K, Uemori T, Ueno T, Hashino K, Koyama N, Kawamura A, Kato I. Enhancement of retroviral gene transduction on a dish coated with a cocktail of two different polypeptides: one exhibiting binding activity toward target cells, and the other toward retroviral vectors. J Biochem. 1998; 123 1041-1047
- 25 Hanenberg H, Xiag X L, Dilloo D, Hashino K, Kato I, Williams D. Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nature Medicine. 1996; 2 876-882
- 26 Rudoll K, Phillips K, Lee S W, Hull S, Gaspar O, Sucgang N, Gilboa E, Smith C. High-efficiency retroviral vector mediated gene transfer into human peripheral blood CD44 + T lymphocytes. Gene Ther. 1996; 3 695-705
- 27 Pollok K E, Hanenberg H, Noblitt T W, Schroeder W L, Kato I, Emanuel D, Williams D A. High-efficiency gene transfer into normal and adenosine deaminase-deficient T lymphocytes is mediated by transduction on recombinant fibronectin fragments. J Virol. 1998; 72 4882-4892
- 28 Hwu P, Yang J C, Cowherd R, Treisman J, Shafer G E, Eshhar Z, Rosenberg S A. In vivo antitumor activity of T cells redirected with chimeric antibody/T-cell receptor genes. Cancer Res. 1995; 55 3369-3373
Prof. Dr. med. P. Dall
Universitäts-Frauenklinik Düsseldorf
Moorenstraße 5
40225 Düsseldorf
Email: dall@med.uni-duesseldorf.de